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Wstęp

Geometria ma co najmniej 2500 lat i to właśnie w ramach tej 
dziedziny po raz pierwszy pojawiło się pojęcie dowodu matema-
tycznego, to jest dedukcyjnego rozumowania na podstawie zbio-
ru aksjomatów. Geometria stanowi również bardzo aktywny ob-
szar badawczy w matematyce, ale w ciągu kilku ostatnich dekad 
stopniowo znikała z sylabusów w szkołach wyższych w Zjedno-
czonym Królestwie i poza nim. Niniejsza książka stanowi próbę 
ożywienia tego tematu.

Przechodzę od konkretnych przykładów (obiektów matema-
tycznych, takich jak bryły platońskie, lub twierdzeń, takich jak 
twierdzenie Pitagorasa) do zasad ogólnych. Zakładam niewielką 
wcześniejszą wiedzę matematyczną czytelnika – wystarczy po-
ziom szkoły średniej – ale podczas czytania powinien on chcieć 
używać ołówka, papieru, kompasu i linijki. Geometria wyróżnia 
się spośród innych gałęzi matematyki tym, że dowód twierdze-
nia można w niej przedstawić w sposób obrazowy, bez koniecz-
ności stosowania algebry, ale jednocześnie bez uszczerbku dla 
formalnych rygorystycznych zasad precyzji.

Nie używałem rachunku różniczkowego i starałem się unikać 
zbyt dużej ilości algebry. Wyjątkiem jest rozdział 6, w którym od 
czasu do czasu pojawiają się macierze. Mam nadzieję, że korzyści 
będą duże, ponieważ czytelnik będzie w stanie docenić związek 
między współczesną geometrią a symetrią, ale ten rozdział nie 
jest konieczny do zrozumienia pozostałej części książki.

Rozdział 2 dotyczy geometrii euklidesowej i najlepiej prze-
czytać go przed którymkolwiek z  późniejszych rozdziałów, 



z  których każdy koncentruje się na modyfikacji różnych po-
stulatów Euklidesa. Rozdział 4, wprowadzający przestrzenie 
zakrzywione, należy przeczytać przed rozdziałem 7, w którym 
krzywizna pojawia się w kontekście teorii grawitacji Einsteina. 
Rozdział 5, pokazujący geometrię pod wieloma względami w jej 
najlepszym wydaniu, spodoba się każdemu, kto chce wejść w sfe-
rę geometrii z perspektywy sztuki renesansowej.

Podczas pisania tej książki korzystałem z własnych notatek 
do popularnych wykładów geometrii, które prowadziłem dla 
studentów ubiegających się o  przyjęcie na Uniwersytet Cam-
bridge. Jestem wdzięczny Nickowi Woodhouse’owi za jego wy-
razy zachęty na wczesnych etapach tego projektu, Lacie Menon 
i Robinowi Wilsonowi za przeczytanie wcześniejszych szkiców 
i zasugerowanie zmian, które zaowocowały kilkoma ulepszeniami. 
Chciałbym również podziękować Rogerowi Penrose’owi – za 
podzielenie się ze mną swoim geometrycznym spojrzeniem na 
naukę oraz za wprowadzenie mnie w klasyczną geometrię rzu-
tową. Przede wszystkim zaś wyrażam wdzięczność Adamowi 
Dunajskiemu – za uważną lekturę manuskryptu i  krytyczne 
uwagi, a  także za przygotowanie wszystkich zamieszczonych 
w książce rysunków.
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Wstęp do wydania polskiego

Chciałbym serdecznie podziękować Wydawnictwu Uniwer-
sytetu Łódzkiego za przetłumaczenie mojej książki na język 
polski i  zaprezentowanie jej polskim czytelnikom. To książka 
o geometrii – dziedzinie matematyki, którą rozumiemy jako sys-
tem twierdzeń pewnych i niezmiennych, nie zaś teorii pełnych 
luk i hipotez.

Zdaję sobie sprawę, że w dobie pogoni za sensacją i niezna-
nym nie jest to najlepszą zachętą do lektury. Ludzie pragną wie-
dzieć o najnowszych próbach unifikacji teorii grawitacji z me-
chaniką kwantową, a nawet zrozumieć matematyczne zawiłości 
takich prób. Interesuje ich raczej to, czego nauka nie wie, niż to, 
co w końcu udało nam się dobrze zrozumieć. Wykłady popu-
larne o  tytułach Czy Wszechświat jest komputerem kwantowym? 
lub Podróże w  czasie są możliwe: nowa matematyka obala teorie 
Einsteina doczekają się dziesiątek tysięcy kliknięć w internecie. 
Wykład Jak Ziemia porusza się w polu grawitacyjnym Słońca? bę-
dzie zapewne mniej chwytliwy. Dwa pierwsze wykłady będą 
składać się w najlepszym razie ze spekulacji, których nie-specja-
liści nie będą w stanie odróżnić od rzetelnej wiedzy, natomiast 
trzeci, o  ile wykładowca się do niego przyłoży, pokaże triumf 
myśli ludzkiej najwyższego kalibru: setki lat obserwacji astrono-
micznych połączonych z postępem w matematyce, które dopro-
wadziły Keplera i Newtona do geometrycznej teorii trajektorii 
eliptycznych, a potem Einsteina do jej subtelnej i jeszcze bardziej 
geometrycznej modyfikacji, przepięknej matematycznie i  po-
twierdzonej empirycznie.
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Moim celem w  tej książce jest próba zainteresowania Pań-
stwa tym, co wiemy o geometrii. Tu i tam wspominam również 
o tym, czego nie wiemy – to tak zwane problemy otwarte – ale 
staram się opierać na solidnych podstawach, w ramach których 
można przynajmniej ściśle sformułować tego rodzaju problemy. 
Jest to szczególnie widoczne w rozdziale 7, gdzie przedstawiam 
zagadnienie czarnych dziur w geometrycznym ujęciu teorii gra-
witacji Einsteina.

Moje zadanie jest tym trudniejsze, że geometria nie jest naszą 
narodową specjalnością. Lwowska szkoła matematyczna skupio-
na w latach międzywojennych wokół wybitnego polskiego ma-
tematyka Stefana Banacha zajmowała się analizą funkcjonalną. 
Współczesne podręczniki z tej dziedziny, które polecam moim 
studentom w Cambridge, pełne są twierdzeń nazwanych polski-
mi imionami. Szkoła warszawska, której liderami byli między 
innymi Wacław Sierpiński i Kazimierz Kuratowski, prowadzi-
ła badania w zakresie logiki i  tego, co dzisiaj zwykło się okre-
ślać podstawami matematyki. Możemy być niezmiernie dumni 
z polskich osiągnięć w tej dziedzinie. To tło historyczne miało 
wpływ na programy nauczania matematyki w szkołach podsta-
wowych i średnich. Mój rocznik (matura w 1990 roku w łódz-
kim Liceum im. Mikołaja Kopernika – Kopernik to może naj-
bardziej znany polski geometra) był faszerowany teorią zbiorów 
i podstawami matematyki od pierwszej klasy szkoły podstawo-
wej – to zapewne wpływ szkoły warszawskiej. Później uczyliśmy 
się znienawidzonych granic ciągów, „epsilonów i delt”, a  także 
tak zwanych tasiemców (to upraszczanie skomplikowanych wy-
rażeń algebraicznych). Moja żona twierdzi, że tylko dzięki opa-
nowaniu tasiemców dostała się do liceum. To wstęp do analizy, 
a zatem wpływ szkoły lwowskiej. Czy ktoś z Państwa pamięta 
naukę metod obliczania objętości ostrosłupa? Albo przepięknych 
twierdzeń o trójkątach opisanych na okręgu? Ja nie. Taka staro-
modna matematyka nie była i nie jest w modzie.

Zapraszam więc Państwa do studiów własności kwadra-
tów, okręgów i trójkątów, ale też bardziej egzotycznych kształ-
tów, takich jak aperiodyczny parkietaż Penrose’a. W  dalszych 



rozdziałach zerwiemy z  aksjomatami Euklidesa, co da nam 
szanse zrozumieć geometrię hiperboliczną, a także geometrycz-
ne podstawy perspektywy. To fascynujące i  elementarne dzie-
dziny geometrii, o których nie uczyliśmy się w szkole, mimo że 
ich zrozumienie nie wymaga żadnych wzorów lub operacji alge-
braicznych. Jeszcze bardziej fascynujące jest to, że geometria to 
klucz do zrozumienia najdziwniejszych obiektów we Wszech-
świecie: czarnych dziur, a być może też ukrytych w nich osobli-
wości. Mam nadzieję, że ta książka pozwoli Państwu dostrzec 
piękno tej dziedziny matematyki.

Maciej Dunajski
Tulum, wrzesień 2025
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Rozdział 1

Czym jest geometria?

W  VI wieku p.n.e. grecki filozof Pitagoras z  Samos i  jego 
zwolennicy, pitagorejczycy, spędzali czas na odkrywaniu związ-
ków między liczbami a formami geometrycznymi. Przypisuje się 
im udowodnienie tego, co obecnie znane jest jako twierdzenie 
Pitagorasa: dla dowolnego trójkąta prostokątnego kwadrat prze-
ciwprostokątnej c jest równy sumie kwadratów dwóch pozosta-
łych boków a i b (rysunek 1).

Twierdzenie Pitagorasa stanowi wynik w geometrii – termin 
ten pochodzi od starożytnych greckich słów: geo, ‘ziemia’, i me-
tron, ‘miara’ – gałęzi matematyki zajmującej się długościami, 
kształtami i powierzchniami. Geometria wyróżnia się spośród 
większości innych dziedzin matematyki tym, że dowód twier-
dzenia można przedstawić w sposób obrazowy, bez potrzeby sto-
sowania algebry lub symboli matematycznych, ale jednocześnie 
bez uszczerbku dla precyzji (rysunek 2).

Chociaż przekonanie, że wszystkie trójkąty w  lewym kwa-
dracie można przekształcić w  trójkąty w  prawym kwadracie, 
może wymagać pewnych wyjaśnień, dowód jest zasadniczo sa-
mowystarczalny. Rzeczywiście, koncepcja dowodu matematycz-
nego – rozumowania dedukcyjnego wyprowadzonego z zestawu 
aksjomatów – po raz pierwszy pojawiła się właśnie w geometrii. 
Aksjomaty to stwierdzenia, które są ewidentnie prawdziwe. Po 
raz pierwszy zostały one wymienione przez innego greckiego 
matematyka, Euklidesa, w  jego Elementach – prawdopodobnie 
najbardziej wpływowym zbiorze książek matematycznych, jakie 
kiedykolwiek napisano.
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