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			Wstęp

			Geometria ma co najmniej 2500 lat i to właśnie w ramach tej dziedziny po raz pierwszy pojawiło się pojęcie dowodu matematycznego, to jest dedukcyjnego rozumowania na podstawie zbioru aksjomatów. Geometria stanowi również bardzo aktywny obszar badawczy w matematyce, ale w ciągu kilku ostatnich dekad stopniowo znikała z sylabusów w szkołach wyższych w Zjednoczonym Królestwie i poza nim. Niniejsza książka stanowi próbę ożywienia tego tematu.

			Przechodzę od konkretnych przykładów (obiektów matematycznych, takich jak bryły platońskie, lub twierdzeń, takich jak twierdzenie Pitagorasa) do zasad ogólnych. Zakładam niewielką wcześniejszą wiedzę matematyczną czytelnika – wystarczy poziom szkoły średniej – ale podczas czytania powinien on chcieć używać ołówka, papieru, kompasu i linijki. Geometria wyróżnia się spośród innych gałęzi matematyki tym, że dowód twierdzenia można w niej przedstawić w sposób obrazowy, bez konieczności stosowania algebry, ale jednocześnie bez uszczerbku dla formalnych rygorystycznych zasad precyzji.

			Nie używałem rachunku różniczkowego i starałem się unikać zbyt dużej ilości algebry. Wyjątkiem jest rozdział 6, w którym od czasu do czasu pojawiają się macierze. Mam nadzieję, że korzyści będą duże, ponieważ czytelnik będzie w stanie docenić związek między współczesną geometrią a symetrią, ale ten rozdział nie jest konieczny do zrozumienia pozostałej części książki.

			Rozdział 2 dotyczy geometrii euklidesowej i najlepiej przeczytać go przed którymkolwiek z późniejszych rozdziałów, z których każdy koncentruje się na modyfikacji różnych postulatów Euklidesa. Rozdział 4, wprowadzający przestrzenie zakrzywione, należy przeczytać przed rozdziałem 7, w którym krzywizna pojawia się w kontekście teorii grawitacji Einsteina. Rozdział 5, pokazujący geometrię pod wieloma względami w jej najlepszym wydaniu, spodoba się każdemu, kto chce wejść w sferę geometrii z perspektywy sztuki renesansowej.

			Podczas pisania tej książki korzystałem z własnych notatek do popularnych wykładów geometrii, które prowadziłem dla studentów ubiegających się o przyjęcie na Uniwersytet Cambridge. Jestem wdzięczny Nickowi Woodhouse’owi za jego wyrazy zachęty na wczesnych etapach tego projektu, Lacie Menon i Robinowi Wilsonowi za przeczytanie wcześniejszych szkiców i zasugerowanie zmian, które zaowocowały kilkoma ulepszeniami. Chciałbym również podziękować Rogerowi Penrose’owi – za podzielenie się ze mną swoim geometrycznym spojrzeniem na naukę oraz za wprowadzenie mnie w klasyczną geometrię rzutową. Przede wszystkim zaś wyrażam wdzięczność Adamowi Dunajskiemu – za uważną lekturę manuskryptu i krytyczne uwagi, a także za przygotowanie wszystkich zamieszczonych w książce rysunków.

			



			Wstęp do wydania polskiego

			Chciałbym serdecznie podziękować Wydawnictwu Uniwersytetu Łódzkiego za przetłumaczenie mojej książki na język polski i zaprezentowanie jej polskim czytelnikom. To książka o geometrii – dziedzinie matematyki, którą rozumiemy jako system twierdzeń pewnych i niezmiennych, nie zaś teorii pełnych luk i hipotez.

			Zdaję sobie sprawę, że w dobie pogoni za sensacją i nieznanym nie jest to najlepszą zachętą do lektury. Ludzie pragną wiedzieć o najnowszych próbach unifikacji teorii grawitacji z mechaniką kwantową, a nawet zrozumieć matematyczne zawiłości takich prób. Interesuje ich raczej to, czego nauka nie wie, niż to, co w końcu udało nam się dobrze zrozumieć. Wykłady popularne o tytułach Czy Wszechświat jest komputerem kwantowym? lub Podróże w czasie są możliwe: nowa matematyka obala teorie Einsteina doczekają się dziesiątek tysięcy kliknięć w internecie. Wykład Jak Ziemia porusza się w polu grawitacyjnym Słońca? będzie zapewne mniej chwytliwy. Dwa pierwsze wykłady będą składać się w najlepszym razie ze spekulacji, których nie-specjaliści nie będą w stanie odróżnić od rzetelnej wiedzy, natomiast trzeci, o ile wykładowca się do niego przyłoży, pokaże triumf myśli ludzkiej najwyższego kalibru: setki lat obserwacji astronomicznych połączonych z postępem w matematyce, które doprowadziły Keplera i Newtona do geometrycznej teorii trajektorii eliptycznych, a potem Einsteina do jej subtelnej i jeszcze bardziej geometrycznej modyfikacji, przepięknej matematycznie i potwierdzonej empirycznie.

			Moim celem w tej książce jest próba zainteresowania Państwa tym, co wiemy o geometrii. Tu i tam wspominam również o tym, czego nie wiemy – to tak zwane problemy otwarte – ale staram się opierać na solidnych podstawach, w ramach których można przynajmniej ściśle sformułować tego rodzaju problemy. Jest to szczególnie widoczne w rozdziale 7, gdzie przedstawiam zagadnienie czarnych dziur w geometrycznym ujęciu teorii grawitacji Einsteina.

			Moje zadanie jest tym trudniejsze, że geometria nie jest naszą narodową specjalnością. Lwowska szkoła matematyczna skupiona w latach międzywojennych wokół wybitnego polskiego matematyka Stefana Banacha zajmowała się analizą funkcjonalną. Współczesne podręczniki z tej dziedziny, które polecam moim studentom w Cambridge, pełne są twierdzeń nazwanych polskimi imionami. Szkoła warszawska, której liderami byli między innymi Wacław Sierpiński i Kazimierz Kuratowski, prowadziła badania w zakresie logiki i tego, co dzisiaj zwykło się określać podstawami matematyki. Możemy być niezmiernie dumni z polskich osiągnięć w tej dziedzinie. To tło historyczne miało wpływ na programy nauczania matematyki w szkołach podstawowych i średnich. Mój rocznik (matura w 1990 roku w łódzkim Liceum im. Mikołaja Kopernika – Kopernik to może najbardziej znany polski geometra) był faszerowany teorią zbiorów i podstawami matematyki od pierwszej klasy szkoły podstawowej – to zapewne wpływ szkoły warszawskiej. Później uczyliśmy się znienawidzonych granic ciągów, „epsilonów i delt”, a także tak zwanych tasiemców (to upraszczanie skomplikowanych wyrażeń algebraicznych). Moja żona twierdzi, że tylko dzięki opanowaniu tasiemców dostała się do liceum. To wstęp do analizy, a zatem wpływ szkoły lwowskiej. Czy ktoś z Państwa pamięta naukę metod obliczania objętości ostrosłupa? Albo przepięknych twierdzeń o trójkątach opisanych na okręgu? Ja nie. Taka staromodna matematyka nie była i nie jest w modzie.

			Zapraszam więc Państwa do studiów własności kwadratów, okręgów i trójkątów, ale też bardziej egzotycznych kształtów, takich jak aperiodyczny parkietaż Penrose’a. W dalszych rozdziałach zerwiemy z aksjomatami Euklidesa, co da nam szanse zrozumieć geometrię hiperboliczną, a także geometryczne podstawy perspektywy. To fascynujące i elementarne dziedziny geometrii, o których nie uczyliśmy się w szkole, mimo że ich zrozumienie nie wymaga żadnych wzorów lub operacji algebraicznych. Jeszcze bardziej fascynujące jest to, że geometria to klucz do zrozumienia najdziwniejszych obiektów we Wszechświecie: czarnych dziur, a być może też ukrytych w nich osobliwości. Mam nadzieję, że ta książka pozwoli Państwu dostrzec piękno tej dziedziny matematyki.

			Maciej Dunajski

			Tulum, wrzesień 2025
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			Rozdział 1

			Czym jest geometria?

			W VI wieku p.n.e. grecki filozof Pitagoras z Samos i jego zwolennicy, pitagorejczycy, spędzali czas na odkrywaniu związków między liczbami a formami geometrycznymi. Przypisuje się im udowodnienie tego, co obecnie znane jest jako twierdzenie Pitagorasa: dla dowolnego trójkąta prostokątnego kwadrat przeciwprostokątnej c jest równy sumie kwadratów dwóch pozostałych boków a i b (rysunek 1).

			Twierdzenie Pitagorasa stanowi wynik w geometrii – termin ten pochodzi od starożytnych greckich słów: geo, ‘ziemia’, i metron, ‘miara’ – gałęzi matematyki zajmującej się długościami, kształtami i powierzchniami. Geometria wyróżnia się spośród większości innych dziedzin matematyki tym, że dowód twierdzenia można przedstawić w sposób obrazowy, bez potrzeby stosowania algebry lub symboli matematycznych, ale jednocześnie bez uszczerbku dla precyzji (rysunek 2).

			Chociaż przekonanie, że wszystkie trójkąty w lewym kwadracie można przekształcić w trójkąty w prawym kwadracie, może wymagać pewnych wyjaśnień, dowód jest zasadniczo samowystarczalny. Rzeczywiście, koncepcja dowodu matematycznego – rozumowania dedukcyjnego wyprowadzonego z zestawu aksjomatów – po raz pierwszy pojawiła się właśnie w geometrii. Aksjomaty to stwierdzenia, które są ewidentnie prawdziwe. Po raz pierwszy zostały one wymienione przez innego greckiego matematyka, Euklidesa, w jego Elementach – prawdopodobnie najbardziej wpływowym zbiorze książek matematycznych, jakie kiedykolwiek napisano.
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