-
892
-
880
-
873
-
870
-
804
Pliki do pobrania
Salus aegroti suprema lex - dobro pacjenta najwyższym prawem. Monografia jest rezultatem badań kliniczno-laboratoryjnych przeprowadzonych u pacjentów zagrożonych schorzeniami nowotworowymi. Jedną z coraz powszechniej wykorzystywanych metod biologii molekularnej w rutynowej diagnostyce medycznej jest badanie za pomocą ponad półtora tysiąca testów genetycznych. Pomimo wielu problemów natury społecznej, etycznej i prawnej, zastosowanie w większym stopniu metod biologii molekularnej w praktyce lekarskiej i dentystycznej wydaje się zdecydowanie pożądane. Publikacja może stać się przyczynkiem do nabywania „świadomości genetycznej” w skutecznej diagnostyce oraz leczeniu nowotworów jamy ustnej, stanowiących znaczący odsetek chorób nowotworowych głowy i szyi, które są plagą XXI wieku.
Adegboyega PA, Boromound N, Freeman D: Diagnostic utility odf cell cycle and apoptosis regulatory. Appl Immunohistochem Mol Morphol. 2005; 13: 171–177. DOI: https://doi.org/10.1097/01.pai.0000132190.39351.9b
Ahmed Z, Bicknell R: Angiogenic signaling pathways. Methods Mol Biol. 2009; 467: 3–24. DOI: https://doi.org/10.1007/978-1-59745-241-0_1
Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants, and aging. Cell. 2005; 120(4): 483. DOI: https://doi.org/10.1016/j.cell.2005.02.001
Hamara K, Bielecka-Kowalska A et al.: Alterations In expression profile of iron-related genes in colorectal cancer. Mol. Biol. Rep. 2013; 40(10): 5573–5585. DOI: https://doi.org/10.1007/s11033-013-2659-3
Barallo-Gimeno A, Nieto MA: The Snail genes asinducers of cell movement and survival: implications in development and cancer. Development. 2005; 132: 3151–3161. DOI: https://doi.org/10.1242/dev.01907
Bartkowski SB, Kurek M, Panaś M, Podziorny H, Serwatka F, Stypułkowska J, Zapała J: Chirurgia szczękowo-twarzowa. Collegium Medicum. Kraków 1996.
Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006; 6(7): 506–520. DOI: https://doi.org/10.1038/nrc1926
Auten RL, Davis JM: Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009; 66(2): 121. DOI: https://doi.org/10.1203/PDR.0b013e3181a9eafb
Kowalski M, Bielecka-Kowalska A et al.: Myeloperoxidase gene (MPO) polymorphisms in patients with age-related macular degeneration (AMD). Clin. Exp. Med. Lett. 2010; 51(1): 15–19.
Bielecka-Kowalska A, Majsterek I et al.: The function of the oxidative stress enzymes in patients with the periodontal diseases. Clin. Exp. Med. Lett. 2008; 49(4): 229–233.
Chen K-M: Mechanisms of oral carcinogenesis induced by dibenzo[a,l]pyrene: an environmental pollutant and a tobacco smoke constituent. Int J Cancer. 2013; 133(6): 1300–1309. DOI: https://doi.org/10.1002/ijc.28152
Friedberg EC, Walker GC: DNA Repair and mutagenesis. Am. Soc. for Microb., Washington, DC 1995.
Carnelio S, Khan SA, Rodrigues GS: Free radicals and antioxidant therapy in clinical practice: to be or not to be? J Coll Physicians Surg Pak. 2007; 17(3): 173–174.
Green FL, Page DL, Fleming ID: American Join Committee on Cancer: AJCC Cancer Staging Manual. Springer, New York 2002. DOI: https://doi.org/10.1007/978-1-4757-3656-4
Hanahan D, Weiberg RA: The hallmarksof cancer. Cell. 2000; 100(1): 57–100. DOI: https://doi.org/10.1016/S0092-8674(00)81683-9
Farah CS et al.: Oral cancer and oral potentially malignant disorders. Int J of Dent. 2014; artID 853479, p6. DOI: https://doi.org/10.1155/2014/853479
Leemans CR, Braakhuis BJ, Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 2011; 11(1): 9. DOI: https://doi.org/10.1038/nrc2982
Feron O: Pyruvate in to lactate and back: form the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radither Oncol. 2009; 92(3): 329–333. DOI: https://doi.org/10.1016/j.radonc.2009.06.025
Perona R: Cell signaling: growth factors and tyrosine kinase receptors. Clin Transl Oncol. 2006; 8(2): 77–82. DOI: https://doi.org/10.1007/s12094--006-0162-1
Pu X, Lippman SM, Yang H, Lee JJ, Wu X: Cyclooxygenase-2 gene polymorphisms reduc the risk of oral premalignat lesions. Cancer. 2009; 115(7): 1498–1506. DOI: https://doi.org/10.1002/cncr.24157
Itoh T, Matsuda H, Tanioka M, Kuwabara K, Tohara S, Suzuki R: The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J Immunol. 2002; 169(5): 2643–2647. DOI: https://doi.org/10.4049/jimmunol.169.5.2643
Hennessey PT, Westra WH, Califano JA: Human papillomavirus and head and neck squamous cell carcinoma: recent evidence and clinical implications. J Dent Res. 2009; 88(4): 300. DOI: https://doi.org/10.1177/0022034509333371
Hosseinpour S, Mashhadiabbas F, Ahsaie MG: Diagnostic biomarkers in oral verrucous carcinoma: A systematic review. Pathol Oncol Res. 2017; 23(1): 19–32. DOI: https://doi.org/10.1007/s12253-016-0150-x
Elliot MR, Ravichandran KS: Clearance of apoptotic cells: implications in health and disease. J Cell Biol. 2010; 189(7): 1059. DOI: https://doi.org/10.1083/jcb.201004096
St. John MA, Li Y, Zhou X et al.: Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004; 130(8): 929–935. DOI: https://doi.org/10.1001/archotol.130.8.929
Kroemer G, Pouyssegur J: Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008; 13(6): 472–482. DOI: https://doi.org/10.1016/j.ccr.2008.05.005
Leivo I: Insights into a complex group of neoplastic disease: advances in histopatologic classification and molecular pathology of salivary gland cancer. Acta Oncol. 2006; 45(6): 662. DOI: https://doi.org/10.1080/02841860600801316
Sculy C, Bagan J: Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Dis. 2009; 15(6): 388–399. DOI: https://doi.org/10.1111/j.1601-0825.2009.01563.x
Parkin MD, Bray F et al.: Global Cancer Statisics, 2002. CA Cancer J Clin. 2005; 55(2): 74–108. DOI: https://doi.org/10.3322/canjclin.55.2.74
Gale N, Zidar N: Benign and potentially malignant lesions of the squamous epithelium and squamous cell carcinoma. [in] Cardesa A, Slootweg PJ (eds): Pathology of the Head Neck. Springer, 2006; Ch.1: 1–38. DOI: https://doi.org/10.1007/3-540-30629-3_1
Quail G: Atypical facial pain--a diagnostic challenge. Aust Fam Physician. 2005; 34(8): 729–730.
Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature. 2009; 458(7239): 719–724. DOI: https://doi.org/10.1038/nature07943
Kryst L i wsp.: Chirurgia szczękowo-twarzowa. WL PZWL, Warszawa 2011.
Li Y, St. John MA, Show X et al.: Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004; 10(24): 8442–8450. DOI: https://doi.org/10.1158/1078-0432.CCR-04-1167
Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D: Molecular techniques and genetic alternations in head and neck cancer. Oral Oncol. 2009; 45 (4–5): 335–339. DOI: https://doi.org/10.1016/j.oraloncology.2008.05.015
Fritz A, Percy C, Jack A: International Clasification of Diseases for Oncology. Ed. 3 World Health Organization, Geneva 2000.
Ghabanchi J, Fattahi MJ, Mardani M: Polymorphism of tumor protein p53 codon 72 showed no association with oral lichen planus in Shiraz, Iran. J Craniofac Surg. 2009; 20(6): 2168–2170. DOI: https://doi.org/10.1097/SCS.0b013e3181bf015e
Kumar V, Abbas AK, Aster JC: Robbins basic pathology. Saunders an im. of Elsevier Inc. 2013.
Silberstein SD, Lipton RB, Dalessio DJ: Wolff’s Headache and other Head Pain, W XVII: 521–522. Oxford University Press, New York 2001.
Goodman M, Liu L, Ward K: Invasion characteristics of oral tongue cancer: frequency of reporting and effect on survival in a population-based study. Cancer. 2009; 115(17): 4010–4020. DOI: https://doi.org/10.1002/cncr.24459
Coghlin C, Murray GI: Current and emerging concepts in tumour metastasis. J Pathol. 2010; 222(1): 1–15. DOI: https://doi.org/10.1002/path.2727
Ciccia A, Elledge SJ: The DNA damage response: making it safe to play with knives. Mol Cell. 2010; 40(2): 179–204. DOI: https://doi.org/10.1016/j.molcel.2010.09.019
Collado M, Serrano M: Senescence in tumours: evidence form mice and humans. Nat Rev Cancer. 2010; 10(1): 51–57. DOI: https://doi.org/10.1038/nrc2772
Burkhart DL, Sage J: Cellular mechanisms of tumour suppresion by the retinoblastoma gene. Nat Rev Cancer. 2008; 8(9): 671–682. DOI: https://doi.org/10.1038/nrc2399
Kowalski M, Bielecka-Kowalska A et al.: Myeloperoxidase gene (MPO) polymorphisms in patients with age-related macular degeneration (AMD). Int Rev Allergol Clin Immunol. 2010; 16(1/2): 26–31.
Krajowy Rejestr Nowotworów 2010, http://onkologia.org.pl
Fovel LM, Seabury RW, Miller CD, Darko W, Probst LA, Horvath L: Safety and efficacy of direct oral anticoagulant therapy in patients with cancer. J Pharm Pract. 2019; 31: 897190019896500. DOI: 10.1177/0897190019896500
Chi AC, Day TA, Neville BW: Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin. 2015; 65(5): 401–421. DOI: https://doi.org/10.3322/caac.21293
Kruk-Zagajewska A, Wierzbicka M: Rak języka i dna jamy ustnej – rozpoznawanie i postępy w leczeniu. Współcz. Onkol. 2003; 7(4): 264–274.
Kumamoto H, Yamauchi K, Yoshida M, Ooya K: Immunohistochemical detection of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in ameloblastomas. J Oral Pathol Med. 2003; 32(2): 114–120. DOI: https://doi.org/10.1034/j.1600-0714.2003.00086.x
Harris CC: P 53: at the crossroads of molecular carcinogenesis and risk assessment. Science. 1993; 262(5142): 198–1981. DOI: https://doi.org/10.1126/science.8266092
Artandi SE, DePitho RA: Telomers and telomerase in cancer. Carrcinogenesis. 2010; 31(1): 9–18. DOI: https://doi.org/10.1093/carcin/bgp268
Ow TJ, Myers JN: Current management of advanced resectable oral cavity squamous cell carcinoma. Clin Exp Otorhinolaryngol. 2011; 4(1): 1–10. DOI: https://doi.org/10.3342/ceo.2011.4.1.1
Mydlarz WK, Hennessey PT, Califano JA: Advances and perspectives in the molecular diagnosis of head and neck cancer. Expert Opin Med Diagn. 2010; 4(1): 53–65. DOI: https://doi.org/10.1517/17530050903338068
Ambatipudi S, Bhosale PG, Heath E, Pandey M, Kumar G, Kane S, Patil A, Maru GB, Desai RS, Watt FM, Mahimkar MB: Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse. PLoS One. 2013; 8(7): e70688. DOI: https://doi.org/10.1371/journal.pone.0070688
Boldrup L, Coates PJ, Gu X, Nylander K: DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J Pathol. 2007; 213(4): 384–391. DOI: https://doi.org/10.1002/path.2237
Fillies T, Werkmeister R, Packeisen J, Brandt B, Morin P, Weingart D, Joos U, Buerger H: Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity. BMC Cancer. 2006; 6: 10. DOI: https://doi.org/10.1186/1471-2407-6-10
Gires O, Mack B, Rauch J, Matthias C: CK8 correlates with malignancy in leukoplakia and carcinomas of the head and neck. Biochem Biophys Res Commun. 2006; 343(1): 252–259. DOI: https://doi.org/10.1016/j.bbrc.2006.02.139
Karantza V: Keratins in health and cancer: more than mere epithelial cell markers. Oncogene. 2011; 30(2): 127–138. DOI: https://doi.org/10.1038/onc.2010.456
Ohkura S, Kondoh N, Hada A, Arai M, Yamazaki Y, Sindoh M, Takahashi M, Matsumoto I, Yamamoto M: Differential expression of the keratin-4, -13, -14,-17 and transglutaminase 3 genes during the development of oral squamous cell carcinoma from leukoplakia. Oral Oncol. 2005; 41(6): 607–613. DOI: https://doi.org/10.1016/j.oraloncology.2005.01.011
Toyoshima T, Vairaktaris E, Nkenke E, Schlegel KA, Neukam FW, Ries J: Cytokeratin 17 mRNA expression has potential for diagnostic marker of oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2008; 134(4): 515–521. DOI: https://doi.org/10.1007/s00432-007-0308-8
Khanom R, Sakamoto K, Pal SK, Shimada Y, Morita K, Omura K, Miki Y, Yamaguchi A: Expression of basal cell keratin 15 and keratin 19 in oral squamous neoplasms represents diverse pathophysiologies. Histol Histopathol. 2012; 27(7): 949–959.
Mikami T, Cheng J, Maruyama S, Kobayashi T, Funayama A, Yamazaki M, Adeola HA, Wu L, Shingaki S, Saito C, Saku T: Emergence of keratin 17 vs. loss of keratin 13: their reciprocal immunohistochemical profiles in oral carcinoma in situ. Oral Oncol. 2011; 47(6): 497–503. DOI: https://doi.org/10.1016/j.oraloncology.2011.03.015
Sakamoto K, Aragaki T, Morita K, Kawachi H, Kayamori K, Nakanishi S, Omura K, Miki Y, Okada N, Katsube K, Takizawa T, Yamaguchi A: Down-regulation of keratin 4 and keratin 13 expression in oral squamous cell carcinoma and epithelial dysplasia: a clue for histopathogenesis. Histopathology. 2011; 58(4): 531–542. DOI: https://doi.org/10.1111/j.1365-2559.2011.03759.x
Bragulla HH, Homberger DG: Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009; 214(4): 516–559. DOI: https://doi.org/10.1111/j.1469-7580. 2009.01066.x
Moll R, Divo M, Langbein L: The human keratins: biology and pathology. Histochem Cell Biol. 2008; 129: 705–733. DOI: https://doi.org/10.1007/s00418-008-0435-6
Dötsch V, Bernassola F, Coutandin D, Candi E, Melino G: p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol. 2010; 2(9): a004887. DOI: https://doi.org/10.1101/cshperspect.a004887
Wysocka-Dubielecka KM, Majewski S, Łoza K: The role of p63 proteins in tumorigenesis and the significance of their expression in the diagnosis of skin and female genital tract neoplasms. Przegl Dermatol. 2015; 102(6): 550–557. DOI: https://doi.org/10.5114/dr.2015.55706
Supsavhad W, Dirksen WP, Martin CK, Rosol TJ: Animal models of head and neck squamous cell carcinoma. Vet J. 2016; 210: 7–16. DOI: https://doi.org/10.1016/j.tvjl.2015.11.006
Sinha A, Chandra S, Raj V, Zaidi I, Saxena S, Dwivedi R: Expression of p63 in potentially malignant and malignant oral lesions. J Oral Biol Craniofac Res. 2015; 5(3): 165–172. DOI: https://doi.org/10.1016/j.jobcr.2015.07.001
Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T: Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell. 2005; 7(4): 363–373. DOI: https://doi.org/10.1016/j.ccr.2005.02.019
Nasser W, Flechtenmacher C, Holzinger D, Hofele C, Bosch FX: Aberrant expression of p53, p16INK4a and Ki-67 as basic biomarker for malignant progression of oral leukoplakias. J Oral Pathol Med. 2011; 40(8): 629–635. DOI: 10.1111/j.1600-0714.2011.01026.x
Ausoni S, Boscolo-Rizzo P, Singh B, Da Mosto MC, Spinato G, Tirelli G, Spinato R, Azzarello G: Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev. 2016; 35(3): 413–426. DOI: https://doi.org/10.1007/s10555-016-9625-1
Padhi SS, Roy S, Kar M, Saha A, Roy S, Adhya A, Baisakh M, Banerjee B: Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncol. 2017; 73: 27–35. DOI: 10.1016/j.oraloncology.2017.07.030
Koprowska K, Czyż M: Molekularne mechanizmy działania partenolidu – stary lek z nową twarzą. Postępy Hig Med Dośw. 2010; 64: 110–114.
Esteller M: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002; 21(35): 5427–5440. DOI: https://doi.org/10.1038/sj.onc.1205600
Gissi DB, Gabusi A, Servidio D, Cervellati F, Montebugnoli I: Predictive Role of p53 protein as a single marker or associated with ki67 antigen in oral leukoplakia: a retrospective longitudinal study. Open Dent J. 2015; 9: 41–45. DOI: https://doi.org/10.2174/1874210601509010041
Courthod G, Franco P, Palermo L, Pisconti S, Numico G: The role of microRNA in head and neck cancer: current knowledge and perspectives. Molecules. 2014; 19(5): 5704–5716. DOI: https://doi.org/10.3390/molecules19055704
Saintigny P, Foy JP, Ferrari A, Cassier P, Viari A, Puisieux A: [Contribution and challenges of Big Data in oncology]. Bull Cancer. 2017; 104(3): 281–287. DOI: https://doi.org/10.1016/j.bulcan.2016.10.020
Better Outcomes with Precision Medicine. Cancer Discov. 2016; 6: 1296–1297. DOI: https://doi.org/10.1158/2159-8290.CD-NB2016-134
Machiels JP, Coulie PG: The promise of immunostimulatory antibodies in head and neck cancer. Lancet Oncol. 2016; 17(7): 856–857. DOI: https://doi.org/10.1016/S1470-2045(16)30106-1
Machiels JP, Coulie PG: The promise of immunostimulatory antibodies in head and neck cancer. Lancet Oncol. 2016; 17(7): 856–857. DOI: https://doi.org/10.1016/S1470-2045(16)30106-1
Wong K, Delaney GP, Barton MB: Evidence-based optimal number of radiotherapy fractions for cancer: A useful tool to estimate radiotherapy demand. Radiother Oncol. 2016; 119(1): 145–149. DOI: https://doi.org/10.1016/j.radonc.2015.12.001
de Jong MC, Ten Hoeve JJ, Grenman R, Wessels LF, Kerkhoven R, Te Riele H et al.: Pretreatment microRNA expression impacting on epithelial-to-mesenchymal transition predicts intrinsic radiosensitivity in head and neck cancer cell lines and patients. Clin Cancer Res. 2015; 21(24): 5630–5638. DOI: https://doi.org/10.1158/1078-0432.CCR-15-0454
Dumitrescu RG: Epigenetic markers of early tumor development. Methods Mol Biol. 2012; 863: 3–14. DOI: 10.1007/978-1-61779-612-8_1
Esteller M: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002; 21(35): 5427–5440. DOI: https://doi.org?10.1038?sj.onc.1205600
Pergol P, Nowak-Stępowska A, Drela K, Padzik-Graczyk A: Znaczenie komórek macierzystych w inicjacji i rozwoju nowotworów. Postępy Biochem. 2013; 59: 45–52.
Skinner HD, Giri U, Yang L, Woo SH, Story MD, Pickering CR et al.: Proteomic profiling identifies PTK2/FAK as a driver of radioresistance in HPV negative head and neck cancer. Clin Cancer Res. 2016; 22: 4345–4350. DOI: https://doi.org/10.1158/1078-0432.CCR-15-2785
Rooper LM, Windon MJ, Hernandez T, Miles B, Ha PK, Ryan WR, Van Zante A, Eisele DW, D’Souza G, Fakhry C, Westra WH: HPV-positive squamous cell carcinoma of the larynx, oral cavity, and hypopharynx: clinicopathologic characterization with recognition of a novel warty variant. Am J Surg Pathol. 2020; 44(5): 691–702. DOI: 10.1097/PAS.0000000000001433
Lindel K, Beer KT, Laissue J, Greiner RH, Aebersold DM: Human papillomavirus positive squamous cell carcinoma of the oropharynx: a radiosensitive subgroup of head and neck carcinoma. Cancer. 2001; 92(4): 805–813. DOI: https://doi.org/10.1002/1097-0142(20010815)92:4<805::AID-CNCR1386>3.0.CO;2-9
Mirghani H, Amen F, Blanchard P, Moreau F, Guigay J, Hartl DM et al.: Treatment de-escalation in HPV-positive oropharyngeal carcinoma: ongoing trials, critical issues and perspectives. Int J Cancer. 2015; 136(7): 1494–1503. DOI: https://doi.org/10.1002/ijc.28847
Masterson L, Moualed D, Liu ZW, Howard JE, Dwivedi RC, Tysome JR et al.: De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. Eur J Cancer. 2014; 50(15):
–2648. DOI: https://doi.org/10.1016/j.ejca.2014.07.001
Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH et al.: A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009; 75(2): 489–496. DOI: https://doi.org/10.1016/j.ijrobp.2009.06.014
Liao CT, Chang JT, Wang HM, Ng SH, Hsueh C, Lee LY et al.: Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann Surg Oncol. 2008; 15(3): 915–922. DOI: https://doi.org/10.1245/s10434-007-9761-5
Loree TR, Strong EW: Significance of positive margins in oral cavity squamous carcinoma. Am J Surg. 1990; 160(4): 410–414. DOI: https://doi.org/10.1016/S0002-9610(05)80555-0
Chinn SB, Myers JN: Oral Cavity Carcinoma: Current Management, Controversies, and Future Directions. J Clin Oncol. 2015; 33(29): 3269–3276. DOI: https://doi.org/10.1200/JCO.2015.61.2929
Smits RW, Koljenovic S, Hardillo JA, Ten Hove I, Meeuwis CA, Sewnaik Aet al.: Resection margins in oral cancer surgery: Room for improvement. Head Neck. 2016; 38 Suppl 1: E2197–203. DOI: https://doi.org/10.1002/hed.24075
Rosenthal EL, Warram JM, Bland KI, Zinn KR: The status of contemporary image-guided modalities in oncologic surgery. Ann Surg. 2015; 261(1): 46–55. DOI: https://doi.org/10.1097/SLA.0000000000000622
Singh J, Jayaraj R, Baxi S, Mileva M, Skinner J, Dhand NK et al.: Immunohistochemical expression levels of p53 and eIF4E markers in histologically negative surgical margins, and their association with the clinical outcome of patients with head and neck squamous cell carcinoma. Mol Clin Oncol. 2016; 4(2): 166–172. DOI: https://doi.org/10.3892/mco.2015.689
Visgauss JD, Eward WC, Brigman BE: Innovations in Intraoperative Tumor Visualization. Orthop Clin North Am. 2016; 47(1): 253–264.
Suganya SA, Kochurani KJ, Nair MG, Louis JM, Sankaran S, Rajagopal R et al.: TM1-IR680 peptide for assessment of surgical margin and lymph node metastasis in murine orthotopic model of oral cancer. Sci Rep. 2016; 6: 36726. DOI: https://doi.org/10.1016/j.ocl.2015.08.023
Weiss MH, Harrison LB, Isaacs RS: Use of decision analysis in planning a management strategy for the stage N0 neck. Arch Otolaryngol Head Neck Surg. 1994; 120(7): 699–702. DOI: https://doi.org/10.1001/archotol.1994.01880310005001
Yang Z, Deng R, Sun G, Huang X, Tang E: Cervical metastases from squamous cell carcinoma of hard palate and maxillary alveolus: a retrospective study of 10 years. Head Neck. 2014; 36(7): 969–975. DOI: https://doi.org/10.1002/hed.23398
Roepman P, Wessels LF, Kettelarij N, Kemmeren P, Miles AJ, Lijnzaad P et al.: An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet. 2005; 37(2): 182–186. DOI: https://doi.org/10.1038/ng1502
van Hooff SR, Leusink FK, Roepman P, Baatenburg de Jong RJ, Speel EJ, van den Brekel MW et al.: Validation of a gene expression signature for assessment of lymph node metastasis in oral squamous cell carcinoma. J Clin Oncol. 2012; 30(33): 4104–4110. DOI: https://doi.org/10.1200/JCO.2011.40.4509
Foy JP, Saintigny P, Goudot P, Schouman T, Bertolus C: The promising impact of molecular profiiling on treatment strategies in oral cancers. J Stomatol Oral Maxillofac Surg. 2017; 118(4): 242–247. DOI: https://doi.org/10.1016/j.jormas.2017.05.004
Adamiak M, Śliwa-Dominiak J, Bąk K, Tokarz-Deptuła B, Deptuła W: Bakterie komensaliczne a odporność układu pokarmowego, oddechowego oraz moczowo-płciowego. Postępy Hig Med Dośw. 2016; 70: 599–609. DOI: https://doi.org/10.5604/17322693.1204954
Duerkop BA, Hooper LV: Resident viruses and their interactions with the immune system. Nat Immunol. 2013; 14(7): 654–659. DOI: https://doi.org/10.1038/ni.2614
Nelson KE: Metagenomics of the human body. Springer Science + Business Media. London 2011. DOI: https://doi.org/10.1007/978-1-4419-7089-3
Faden AA: The potential role of microbes in oncogenesis with particular emphasis on oral cancer. Saudi Med J. 2016; 37(6): 607–612. DOI: https://doi.org/10.15537/smj.2016.6.14048
Avila M, Ojcius DM, Yilmaz O: The oral microbiota: living with a permanent guest. DNA Cell Biol. 2009; 28(8): 405–411. DOI: https://doi.org/10.1089/dna.2009.0874
Dworecka-Kaszak B: Mycobiome – a cross-talk between fungi and their host. XVI Conference DIGMOL 2015 „Molecular biology in diagnostics if infectious disease and biotechnology”, Warszawa 2015, 67–71.
Strużycka I: The oral microbiome in dental caries. Pol J Micro. 2014; 63: 127–135. DOI: https://doi.org/10.33073/pjm-2014-018
Khajuria N, Metgud R: Role of bacteria in oral carcinogenesis. Indian J Dent. 2015; 6(1): 37–43. DOI: https://doi.org/10.4103/0975-962X.151709
Beighton D, Gallagher J et al.: Isolation and identification of bifidobacteriaceae from human saliva. Appl Environ Microbiol. 2008; 74(20): 6457–6460. DOI: https://doi.org/10.1128/AEM.00895-08
Nasidze I, Li J, Quinque D, Tang K, Stoneking M: Global diversity in the human salivary microbiome. Genome Res. 2009; 19(4): 636–643. DOI: https://doi.org/10.1101/gr.084616.108
Hu J, Han S, Chen Y, Ji Z: Variations of tongue coating microbiota in patients with gastric cancer. Biomed Re Int. 2015; 2015: 173729. DOI: https://doi.org/10.1155/2015/173729
Chałas R, Wójcik-Chęcińska I, Woźniak MJ et al.: Płytka bakteryjna jako biofilm – zagrożenia w jamie ustnej oraz sposoby zapobiegania. Postępy Hig Med Dosw. 2015; 69: 1140–1148.
He X, Shi W: Oral microbiology: past, present and future. Int J Oral Science. 2009; 1(2): 47–58. DOI: https://doi.org/10.4248/ijos.09029
Zhang Z, Yang J, Feng Q, Chen B, Li M, Liang C, Li M, Li Z, Xu Q, Zhang L, Chen W: Compositional and Functional Analysis of the Microbiome in Tissue and Saliva of Oral Squamous Cell Carcinoma. Front Microbiol. 2019; 10: 1439. DOI: https://doi.org/10.3389/fmicb.2019.01439
Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD: Redefining of the human oral mycobiome with improved practices in amplicon-based taxonomy: Discovery of Malassezia as a prominent commensal. PLoS One. 2014; 9(3): e90899. DOI: https://doi.org/10.1371/journal.pone.0090899
Moraes RC, Dias FL, Figueredo CM, Fischer RG: Association between Chronic Periodontitis and Oral/Oropharyngeal Cancer. Braz. Dent. J. 2016; 27(3): 261–266. DOI: https://doi.org/10.1590/0103-6440201600754
Meisel P, Holtfreter B, Biffar R, Suemnig W, Kocher T: Association of periodontitis with the risk of oral leukoplakia. Oral Oncol. 2012; 48(9): 859–863. DOI: https://doi.org/10.1016/j.oraloncology.2012.02.022
Tezal M, Grossi SG, Genco RJ: Is periodontitis associated with oral neoplasms? J Periodontol. 2005; 76(3): 406–410. DOI: https://doi.org/10.1902/jop.2005.76.3.406
Whitmore SE, Lamont RJ: Oral bacteria and cancer. PLoS Pathog. 2014; 10(3): e1003933. DOI: https://doi.org/10.1371/journal.ppat.1003933
Ha NH, Park DG, Woo BH, Kim DJ, Choi JI, Park BS, Kim YD, Lee JH, Park HR: Porphyromonas gingivalis increases the invasiveness of oral cancer cells by upregulating IL-8 and MMPs. Cytokine. 2016; 86: 64–67. DOI: https://doi.org/10.1016/j.cyto.2016.07.013
Faden AA: The potential role of microbes in oncogenesis with particular emphasis on oral cancer. Saudi Med J. 2016; 37(6): 607–602. DOI: https://doi.org/10.15537/smj.2016.6.14048
Khajuria N, Metgud R: Role of bacteria in oral carcinogenesis. Indian J Dent. 2015; 6(1): 37–43. DOI: https://doi.org/10.4103/0975-962X.151709
Tezal M, Grossi SG, Genco RJ: Is periodontitis associated with oral neoplasms? J Periodontol. 2005; 76(3): 406–410. DOI: https://doi.org/10.1902/jop.2005.76.3.406
Rusin P, Markiewicz Ł, Majsterek I: Genetic predeterminations of head and neck cancer. Postepy Hig Med Dosw. 2008; 62: 490–501.
De Carlo AA et al.: Induction of matrix metalloproteinases and a collagen--degrading phenotype in fibroblasts and epithelial cells by secreted Porphyromonas gingivalis proteinase. J Periodont Res. 1998; 33(7): 408–420. DOI: https://doi.org/10.1111/j.1600-0765.1998.tb02337.x
Lyons SR et al.: Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol. 2000; 38(6): 2362–2365. DOI: https://doi.org/10.1128/JCM.38.6.2362-2365.2000
Pouliot M et al.: Lipoxin A (4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry. 2000; 39(16): 4761–4768. DOI: https://doi.org/10.1021/bi992551b
Zhu XQ, Lu W, Chen Y, Cheng XF, Qiu JY, Xu Y, Sun Y: Effects of Porphyromonas gingivalis LipopolysaccharideTolerized Monocytes on Inflammatory Responses in Neutrophils. PLoS One. 2016; 11(8): e0161482. DOI: https://doi.org/10.1371/journal.pone.0161482
Deshpande RG et al.: Invasion strategies of the oral pathogen Porphyromonas gingivalis: implications for cardiovascular disease. Invasion Metastasis. 1998; 18(2): 57–69. DOI: https://doi.org/10.1159/000024499
Huard-Delcourt A et al.: Adherence of Porphyromonas gingivalis to epithelial cells: analysis by flow cytometry. Eur J Oral Sci. 1998; 106(5): 938–944. DOI: https://doi.org/10.1046/j.0909-8836.1998.eos106506.x
Hagewald S et al.: Total IgA and Porphyromonas gingivalis-reactive IgA in the saliva of patients with generalised early-onset periodontitis. Eur J Oral Sci. 2000; 108(2): 147–153. DOI: https://doi.org/10.1034/j.1600-0722.2000.00743.x
Eskan MA, Benakanakere MR, Rose BG, Zhang P, Zhao J, Stathopoulou P, Fujioka D, Kinane DF: Interleukin-1beta modulates proinflammatory cytokine production in human epithelial cells. Infect Immun. 2008; 76: 2080–2089. DOI: https://doi.org/10.1128/IAI.01428-07
Chen TS, Kuo CH, Battsengel S, Pan LF, Day CH, Shen CY, Chung LC, Padma VV, Yao CK, Lin YM, Huang CY: Adipose-derived stem cells decrease cardiomyocyte damage induced by porphyromonas gingivalis endotoxin through suppressing hypertrophy, apoptosis, fibrosis, and MAPK markers. Environ Toxicol. 2018; 33(4): 508–513. DOI: https://doi.org/10.1002/tox.22536
Chen TS, Kuo CH, Battsengel S, Pan LF, Day CH, Shen CY, Chung LC, Padma VV, Yao CK, Lin YM, Huang CY: Adipose-derived stem cells decrease cardiomyocyte damage induced by porphyromonas gingivalis endotoxin through suppressing hypertrophy, apoptosis, fibrosis, and MAPK markers. Environ Toxicol. 2018; 33(4): 508–513. DOI: https://doi.org/10.1002/tox.22536
Zhu XQ, Lu W, Chen Y, Cheng XF, Qiu JY, Xu Y, Sun Y: Effects of Por-phyromonas gingivalis LipopolysaccharideTolerized Monocytes on Inflammatory Responses in Neutrophils. PLoS One. 2016; 11(8): e0161482. DOI: https://doi.org/10.1371/journal.pone.0161482
Moffatt CE, Lamont RJ: Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun. 2011; 79(7): 2632–2637. DOI: https://doi.org/10.1128/IAI.00082-11
Kang W, Jia Z, Tang D, Zhang Z, Gao H, He K, Feng Q: Fusobacterium nucleatum Facilitates Apoptosis, ROS Generation, and Inflammatory Cytokine Production by Activating AKT/MAPK and NF-κB Signaling Pathways in Human Gingival Fibroblasts. Oxid Med Cell Longev. 2019; 2019: 1681972. DOI: https://doi.org/10.1155/2019/1681972
Geng F, Zhang Y, Lu Z, Zhang S, Pan Y: Fusobacterium nucleatum Caused DNA Damage and Promoted Cell Proliferation by the Ku70/p53 Pathway in Oral Cancer Cells. DNA Cell Biol. 2020; 39(1): 144–151. DOI: https://doi.org/10.1089/dna.2019.5064
Łaczmańska I, Łaczmański Ł: Metoda MLPA oraz jej zastosowanie w diagnostyce chorób uwarunkowanych genetycznie. Postępy Biologii Komórki. 2009; 36(4): 555–563.
Nygren AO, Ameziane N, Duarte HM, Vijzelaar V, Waisfisz Q, Hess C, Schouten J, Errami A: Methylation-specific MLPA (MS-MLPA): simultaneous detection of GC methylation and copy numer changes of up to 40 sequences. Nucleic Acid Res. 2005; 33(14): e128. DOI: https://doi.org/10.1093/nar/gni127
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402–408. DOI: https://doi.org/10.1006/meth.2001.1262
Chung CT, Miller RH: A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res. 1988; 16(8): 3580. DOI: https://doi.org/10.1093/nar/16.8.3580
Sambrook JF, Russell DW: Molecular cloning: A Laboratory manual, Third Edition. Cold Spring Harbor Laboratory Press 2001.
Xing EP, Nie Y, Song Y, Yang GY, Cai YC, Wang LD, Yang CS: Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res. 1999; 5(10): 2704–2713.
Xing EP, Nie Y, Wang LD, Yang GY, Yang CS: Aberrant methylation of p16INK4a and deletion of p15INK4b are frequent events in human esophageal cancer in Linxian, China. Carcinogenesis. 1999; 20(1): 77–84. DOI: https://doi.org/10.1093/carcin/20.1.77
Stadler WM, Olopade O: The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes. Urol Res. 1996; 24(4): 239–244. DOI: https://doi.org/10.1007/BF00295899
Anandharaj A, Ekshyyan O, Jia Y et al.: EBV and not HPV sensitizes tobacco associated head and neck cancer cell line FaDu to radiotherapy. Acta Otolaryngol. 2016; 136(4): 354–362. DOI: https://doi.org/10.3109/00016489.2015.1114182
Kruk-Zagajewska A, Wierzbicka M: Rak języka i dna jamy ustnej – rozpoznawanie i postępy w leczeniu. Współcz. Onkol. 2003; 7(4): 264–274.
Ali H, Sinnott SJ, Corcoran P et al.: Oral cancer incidence and survival rates in the Republic of Ireland, 1994–2009. BMC Cancer. 2016; 16(1): 950. DOI: https://doi.org/10.1186/s12885-016-2839-3
García-Kass AI, Herrero-Sánchez A, Esparza-Gómez G: Oral tongue cancer in public hospitals in Madrid, Spain (1990–2008). Med Oral Patol Oral Cir Bucal. 2016; 21(6): e658–e664. DOI: https://doi.org/10.4317/medoral.21196
Singal R, Ginder GD: DNA methylation. Blood. 1999; 93: 4059–4070. DOI: https://doi.org/10.1182/blood.V93.12.4059
Kuzmin I, Geil L: DNA methylation and chromatin modifications in cancer and development. Int Arch Biosci. 2001; 1047–1056.
El-Osta A: The rise and fall of genomic methylation in cancer. Leukemia. 2004; 18(2): 233–237. DOI: https://doi.org/10.1038/sj.leu.2403218
Igaki H, Sasaki H, Kishi T, Sakamoto H, Tachimori Y, Kato H, Watanabe H, Sugimura T, Terada M: Highly frequent homozygous deletion of the p16 gene in esophageal cancer cell lines. Biochem Biophys Res Commun. 1994; 203(2): 1090–1095. DOI: https://doi.org/10.1006/bbrc.1994.2294
Tanaka H, Shimada Y, Imamura M, Shibagaki I, Ishizaki K: Multiple types of aberrations in the p16 (INK4a) and the p15(INK4b) genes in 30 esophageal squamous-cell-carcinoma cell lines. Int J Cancer. 1997; 70(4): 437–442. DOI: https://doi.org/10.1002/(SICI)1097-0215(19970207)70:4<437::AID-IJC11>3.0.CO;2-C
Zhang X, Feng H, Li D, Liu S, Amizuka N, Li M: Identification of differentially expressed genes induced by aberrant methylation in oral squamous cell carcinomas using integrated bioinformatic analysis. Int J Mol Sci. 2018; 19(6): 1698. DOI: https://doi.org/10.3390/ijms19061698
Poage GM, Houseman EA, Christensen BC, Butler RA, Avissar-Whiting M, McClean MD, Waterboer T, Pawlita M, Marsit CJ, Kelsey KT: Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer. Clin Cancer Res. 2011; 17(11): 3579–3589. DOI: https://doi.org/10.1158/1078-0432.CCR-11-0044
Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JFM: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008; 8(3): 187–198. DOI: https://doi.org/10.2174/156800908784293659
Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009; 4(3): 226–235. DOI: https://doi.org/10.1016/j.stem.2009.01.007
Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N, Kishi K, Asano S, Sakaki Y, Sato Y: A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation. Blood. 2000; 95(6): 2126–2131.
Lin YC, Yeckel MF, Koleske AJ: Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways. J Neurosci. 2013; 33(5): 1846–1857. DOI: https://doi.org/10.1523/JNEURO SCI.4284-12.2013
Xing QT, Qu CM, Wang G: Overexpression of Abl2 predicts poor prognosis in hepatocellular carcinomas and is associated with cancer cell migration and invasion. Onco Targets Ther. 2014; 7: 881–885. DOI: https://doi.org/10.2147/OTT.S62348
Qiang XF, Zhang ZW, Liu Q, Sun N, Pan LL, Shen J, Li T, Yun C, Li H, Shi LH: miR-20a promotes prostate cancer invasion and migration through targeting ABL2. J Cell Biochem. 2014; 115(7): 1269–1276. DOI: https://doi.org/10.1002/jcb.24778
Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ: Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene. 2013; 32(21): 2622–2630. DOI: https://doi.org/10.1038/onc.2012.284
Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, Caillier SJ, Ban M, Goris A, Barcellos LF et al.: Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007; 39(9): 1083–1091. DOI: https://doi.org/10.1038/ng2103
Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T(-) B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998; 20(4): 394–397. DOI: https://doi.org/10.1038/3877
Zenatti PP, Ribeiro D, Li WQ, Zuurbier L, Silva MC, Paganin M, Tritapoe J, Hixon JA, Silveira AB, Cardoso BA et al.: Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011; 43(10): 932–939. DOI: https://doi.org/10.1038/ng.924
Sanyal M, Morimoto M, Baradaran-Heravi A, Choi K, Kambham N, Jensen K, Dutt S, Dionis-Petersen KY, Liu LX, Felix K et al.: Lack of IL7R alpha expression in T cells is a hallmark of T-cell immunodeficiency in Schimke immuno-osseous dysplasia (SIOD). Clin Immunol. 2015; 161(2): 355–365. DOI: https://doi.org/10.1016/j.clim.2015.10.005
Shia W, Chen D: The allele-specific copy number imbalance in CDK14/RAB GAP1L/SH3BP5L and the relation to the poor prognosis in breast cancer. Breast. 2017; 32(1): S104–S105. DOI: https://doi.org/10.1016/S0960-9776(17)30333-8
Li LW, Li XY, Wang WY, Gao TH, Zhou Y, Lu SX: Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Oncol Lett. 2016; 12(4): 2820–2824. DOI: https://doi.org/10.3892/ol.2016.4935
Li XY, Li LW, Wang WY, Yang Y, Zhou Y, Lu SX: Soluble purified recombinant C2ORF40 protein inhibits esophageal cancer cell proliferation by inducing cell cycle G1 phase block. Oncol Lett. 2015; 10(3): 1593–1596. DOI: https://doi.org/10.3892/ol.2015.3429
Li XH, Zhang Y, Zhang HW, Liu XN, Gong TQ, Li MB, Sun L, Ji G, Shi YQ, Han ZY et al.: miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011; 9(7): 824–833. DOI: https://doi.org/10.1158/1541-7786.MCR-10-0529
Zeng R, Liu Y, Jiang ZJ, Huang JP, Wang Y, Li XF, Xiong WB, Wu XC, Zhang JR, Wang QE, Zheng YF: EPB41L3 is a potential tumor suppressor gene and prognostic indicator in esophageal squamous cell carcinoma. Int J Oncol. 2018; 52(5): 1443–1454. DOI: https://doi.org/10.3892/ijo.2018.4316
Zhu LY, Yang NH, Chen J, Zeng T, Yan SY, Liu YY, Yu GF, Chen QX, Du GQ, Pan W et al.: LINC00052 upregulates EPB41L3 to inhibit migration and invasion of hepatocellular carcinoma by binding miR-452-5p. Oncotarget. 2017; 8(38): 63724–63737. DOI: https://doi.org/10.18632/oncotarget.18892
Chu FF: The human glutathione peroxidase genes GPX2, GPX3, and GPX4 map to chromosomes 14, 5, and 19, respectively. Cytogenet Cell Genet. 1994; 66(2): 96–98. DOI: https://doi.org/10.1159/000133675
Zhao H, Li JY, Li X, Han C, Zhang Y, Zheng LL, Guo MZ: Silencing GPX3 expresion promotes tumor metastasis in human thyroid cancer. Curr Protein Pept Sci. 2015; 16(4): 316–321. DOI: https://doi.org/10.2174/138920371604150429154840
Yang ZL, Yang LP, Zou Q, Yuan Y, Li JH, Liang LF, Zeng GX, Chen SL: Positive ALDH1 A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis Markers. 2013; 35(3): 163–172. DOI: https://doi.org/10.1155/2013/187043
Vassallo I, Zinn P, Lai M, Rajakannu P, Hamou MF, Hegi ME: WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1. Oncogene. 2016; 35(1): 12–21. DOI: https://doi.org/10.1038/onc.2015.61
Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, Kristiasen G, Hsieh JC, Hofstaedter F, Hartmann A et al.: WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. 2003; 201(2): 204–212. DOI: https://doi.org/10.1002/path.1449
Tang YX, Simoneau AR, Liao WX, Yi G, Hope C, Liu F, Li SQ, Xie J, Holcombe RF, Jurnak FA et al.: WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther. 2009; 8(2): 458–468. DOI: https://doi.org/10.1158/1535-7163.MCT-08-0885
Morandi L, Gissi D, Tarsitano A, Asioli S, Monti V, Del Corso G, Marchetti C, Montebugnoli L, Foschini MP: DNA methylation analysis by bisulfite next-generation sequencing for early detection of oral squamous cell carcinoma and high-grade squamous intraepithelial lesion from oral brushing. J Craniomaxillofac Surg. 2015; 43(8): 1494–1500. DOI: https://doi.org/10.1016/j.jcms.2015.07.028
Li JM, Lu CL, Cheng MC, Luu SU, Hsu SH, Chen CH: Genetic analysis of the DLGAP1 gene as a candidate gene for schizophrenia. Psychiatry Res. 2013; 205(1–2): 13–17. DOI: https://doi.org/10.1016/j.psychres.2012.08.014
Li J, Cui J, Wang X, Ma J, Niu H, Ma X, Zhang X, Liu S: An association study between DLGAP1 rs11081062 and EFNA5 rs26728 polymorphisms with obsessive–compulsive disorder in a Chinese Han population. Neuropsychiatr Dis Treat. 2015; 11: 897–905. DOI: https://doi.org/10.2147/NDT.S75009
Zhang K, Fan Z, Wang Y, Faraone SV, Yang L, Chang S: Genetic analysis for cognitive flexibility in the trail-making test in attention deficit hyperactivity disorder patients from single nucleotide polymorphism, gene to pathway level. World J Biol Psychiatry. 2017; 20(6): 1–29. DOI: https://doi.org/10.1080/15622975.2017.1386324
Calin GA, Sevignani C, Dumitru CD et al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004; 101(9): 2999–3004. DOI: https://doi.org/10.1073/pnas.0307323101
Zhu W, Liu X, He J et al.: Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: A case control study. BMC Cancer. 2011; 11: 393. DOI: https://doi.org/10.1186/1471-2407-11-393
Sarver AL, Li L, Subramanian S: MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 2010; 70(23): 9570–9580. DOI: https://doi.org/10.1158/0008-5472.CAN-10-2074
Wang XC, Tian LL, Jiang XY et al.: The expression and function of miRNA--451 in non-small cell lung cancer. Cancer Lett. 2011; 311(2): 203–209. DOI: https://doi.org/10.1016/j.canlet.2011.07.026
Li T, Li D, Sha J et al.: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009; 383(3): 280–285. DOI: https://doi.org/10.1016/j.bbrc.2009.03.077
Mitchell PS, Parkin RK, Kroh EM et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008; 105(30): 10513–10518. DOI: https://doi.org/10.1073/pnas.0804549105
Srivastava SK, Bhardwaj A, Singh S et al.: MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis. 2011; 32(12): 1832–1839. DOI: https://doi.org/10.1093/carcin/bgr223
Tseng CW, Lin CC, Chen CN et al.: Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Systems Biology. 2011; 5: 99. DOI: https://doi.org/10.1186/1752-0509-5-99
Kogo R, Mimori K, Tanaka F et al.: Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011; 17(13): 4277–4284. DOI: https://doi.org/10.1158/1078-0432.CCR-10-2866
Mascellani N, Tagliavini L, Gamberoni G et al.: Using miRNA expression data for the study of human cancer. Minerva Biotec. 2008; 20: 23–30.
Lee JW, Choi CH, Choi JJ et al.: Altered microRNA expression in cervical carcinomas. Clin Cancer Res. 2008; 14(9): 2535–2542. DOI: https://doi.org/10.1158/1078-0432.CCR-07-1231
Motoyama K, Inoue H, Takatsuno Y et al.: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009; 34(4): 1069–1075. DOI: https://doi.org/10.3892/ijo_00000233
Tsai WC, Hsu PW, Lai TC et al.: MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009; 49(5): 1571–1582. DOI: https://doi.org/10.1002/hep.22806
Yao C, Liu HN, Wu H, Chen YJ, Li Y, Fang Y, Shen1 XZ, Liu TT: Diagnostic and prognostic value of circulating microRNAs for esophageal squamous cell carcinoma: a systematic review and meta-analysis. J Cancer. 2018; 9(16): 2876–2884. DOI: https://doi.org/10.7150/jca.25351
Troiano G, Mastrangelo F, Caponio VCA et al.: Predictive Prognostic Value of Tissue-Based MicroRNA Expression in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. J Dent Res. 2018; 97(7): 759–766. DOI: https://doi.org/10.1177/0022034518762090
Bourbour S, Beheshti M, Kazemian H, Bahador A: Effects of Micro RNAs and their Targets in Periodontal Diseases. Infect Disord Drug Targets. 2018; 18(3): 183–191. DOI: https://doi.org/10.2174/1871526518666180405155327
Gissi DB, Morandi L, Gabusi A, Tarsitano A, Marchetti C, Cura F, Palmieri A, Montebugnoli L, Asioli S, Foschini MP, Scapoli L: A Noninvasive Test for MicroRNA Expression in Oral Squamous Cell Carcinoma. Int J Mol Sci. 2018; 19(6): 1789. DOI: https://doi.org/10.3390/ijms19061789
Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Tanzi RE et al.: Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008; 83(5): 623–632. DOI: https://doi.org/10.1016/j.ajhg.2008.10.008
Li JM, Lu CL, Cheng MC, Luu SU, Hsu SH, Chen CH: Genetic analysis of the DLGAP1 gene as a candidate gene for schizophrenia. Psychiatry Res. 2013; 205(1–2): 13–17. DOI: https://doi.org/10.1016/j.psy chres.2012.08.014
Mathias SR, Knowles EE, Kent JJ, McKay DR, Curran JE, de Almeida MA, Glahn DC et al.: Recurrent major depression and right hippocampal volume: A bivariate linkage and association study. Hum Brain Mapp. 2016; 37(1): 191–202. DOI: https://doi.org/10.1002/hbm.23025
Fan Z, Qian Y, Lu Q, Wang Y, Chang S, Yang L: DLGAP1 and NMDA receptor-associated postsynaptic density protein genes influence executive function in attention deficit hyperactivity disorder. Brain Behav. 2018; 8(2): e00914. DOI: https://doi.org/10.1002/brb3.914
Kim E, Naisbitt S, Hsueh YP, Rao A, Rothschild A, Craig AM, Sheng M: GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering olecules. J Cell Biol. 1997; 136(3): 669–678. DOI: https://doi.org/10.1083/jcb.136.3.669
Satoh K, Yanai H, Senda T, Kohu K, Nakamura T, Okumura N, Matsumine A, Kobayashi S, Toyoshima K, Akiyama T: DAP-1, nowe białko, które oddziałuje z domenami podobnymi do kinazy guanylanowej hDLG i PSD-95. Genes Cells. 1997; 2(6): 415–424. DOI: https://doi.org/10.1046/j.1365-2443.1997.1310329.x
Abbott LF, Nelson SB: Synaptic plasticity: taming the beast. Nat Neurosci. 2000; 3 (Suppl): 1178–1183. DOI: https://doi.org/10.1038/81453
Stepulak A et al.: NMDA antagonist inhibits the extracellular signal--regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci U S A. 2005; 102(43): 15605–15610. DOI: https://doi.org/10.1073/pnas.0507679102
Stepulak A et al.: Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol. 2009; 132(4): 435–445. DOI: https://doi.org/10.1007/s00418-009-0613-1
North WG, Gao G, Jensen A, Memoli VA, Du J: NMDA receptors are expressed by small-cell lung cancer and are potential targets for effective treatment. Clin Pharmacol. 2010; 2: 31–40. DOI: https://doi.org/10.2147/CPAA.S6262
North WG, Gao G, Memoli VA, Pang RH, Lynch L: Breast cancer expresses functional NMDA receptors. Breast Cancer Res Treat. 2010; 122(2): 307–314. DOI: https://doi.org/10.1007/s10549-009-0556-1
LoRusso PM: Mammalian target of rapamycin as a rational therapeutic target for breast cancer treatment. Oncology. 2013; 84(1): 43–56. DOI: https://doi.org/10.1159/000343063
Stepulak A, Rola R, Polberg K, Ikonomidou C: Glutamate and its receptors in cancer. J Neural Transm. 2014; 121(8): 933–944. DOI: https://doi.org/10.1007/s00702-014-1182-6
Mehrotra A, Koiri RK: N-Methyl-D-Aspartate (NMDA) Receptors: Therapeutic Target against Cancer. Int J Immunother Cancer Res. 2015; 1(1): 013–017. DOI: https://doi.org/10.17352/2455-8591.000004
Deutsch SI, Tang AH, Burket JA, Benson AD: NMDA receptors on the surface of cancer cells: target for chemotherapy? Biomed Pharmacother. 2014; 68(4): 493–496. DOI: https://doi.org/10.1016/j.biopha.2014.03.012
Li L et al.: GKAP Acts as a Genetic Modulator of NMDAR Signalling to Govern Invasive Tumor Growth. Cancer Cell. 2018; 33(4): 736–751. DOI: https://doi.org/10.1016/j.ccell.2018.02.011
Liu J, Liu Z, Zhang X, Gong T, Yao D: Examination of the expression and prognostic significance of DLGAPs in gastric cancer using the TCGA database and bioinformatic analysis. Mol Med Rep. 2018; 18(6): 5621–5629. DOI: https://doi.org/10.3892/mmr.2018.9574
Young MA, May S, Damo A, Yoon YS, Hur MW, Swat W, Parry L: Epigenetic regulation of Dlg1, via Kaiso, alters mitotic spindle polarity and promotes intestinal tumorigenesis. Manuscript Published OnlineFirst on December 14, 2018. DOI: https://doi.org/10.1158/1541-7786.MCR-18-0280
Rendleman J, Shang S, Dominianni Ch, Shields JF, Scanlon P, Adaniel Ch, Desrichard A, Ma M, Shapiro R, Berman R, Pavlick A, Polsky D, Shao Y, Osman I, Kirchhoff T: Melanoma risk loci as determinants of melanoma recurrence and survival. J Transl Med. 2013; 11: 279. DOI: https://doi.org/10.1186/1479-5876-11-279
Kwiatkowski BA, Burwick NR, Richard RE: DLGAP1 directs megakaryocytic growth and differentiation in an MPL dependent manner in hematopoietic cells. Biomark Res. 2019; 7: 13. DOI: https://doi.org/10.1186/s40364-019-0165-z
Zheng M, Liu X, Zhou Q, Liu G: HOTAIRM1 competed endogenously with miR-148a to regulate DLGAP1 in head and neck tumor cells. Cancer Med. 2018; 7(7): 3143–3156. DOI: https://doi.org/10.1002/cam4.1523

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
| Mapa strony | Księgarnia | Social Media |
42 635 55 77 42 235 01 62 ksiegarnia@uni.lodz.pl Biuro: 42 235 01 65 42 635 55 80 agnieszka.janicka@uni.lodz.pl Polityka prywatności i cookies © 2024 Uniwersytet Łódzki |
|

