Systemy inteligentne w sieci Internet

Autorzy

Witold Bartkiewicz
Uniwersytet Łódzki, Wydział Zarządzania, Katedra Informatyki
https://orcid.org/0000-0002-1846-9056
Przemysław Dembowski
Uniwersytet Łódzki, Wydział Zarządzania, Katedra Informatyki
https://orcid.org/0000-0002-5006-2512
Jerzy Stanisław Zieliński
Uniwersytet Łódzki, Wydział Zarządzania, Katedra Informatyki
https://orcid.org/0000-0001-7182-729X

Słowa kluczowe:

systemy informatyczne zarządzania, sztuczna inteligencja, narzędzia informatyki, roboty software’owe, wyszukiwanie informacji, uczenie maszynowe

Streszczenie

Książka poświęcona jest inteligentnym systemom informatycznym w organizacji, wykorzystującym rozproszone źródła informacji niestrukturalnej dostępne w sieci Internet.

W przeciwieństwie do strukturalnych źródeł danych (w formie plikowej lub baz danych) wykorzystywanych przez tradycyjne systemy informatyczne zarządzania, źródła internetowe mają charakter przede wszystkim dokumentów nieposiadających ściśle zdefiniowanej struktury semantycznej i schematu zawartości. Uzyskanie wyższej jakości przetwarzania tego rodzaju informacji niestrukturalnej wymaga inteligentnego zachowania systemu informatycznego, przede wszystkim w formie „zrozumienia” analizowanego dokumentu.

Bibliografia

Gontar B. (red.) (2019), Zarządzanie danymi w organizacji, Wydawnictwo UŁ, Łodź.
Zobacz w Google Scholar

Kisielnicki J. (2013), Systemy informatyczne zarządzania, Agencja Wydawnicza Placet, Warszawa.
Zobacz w Google Scholar

McDonald J.R., Burt G.M., Zieliński J.S., McArthur S.D., Knight U.G., Masucco S., Moyes A., Weir B., Young D.J. (1997), Intelligent knowledge based systems in electric power systems, Chapman & Hall, London.
Zobacz w Google Scholar

Miller J. (2018), Integrating IIoT equipment into manufacturing systems, „Control Engineering” 2018.08.01.
Zobacz w Google Scholar

Miną dziesięciolecia zanim komputer kwantowy trafi pod strzechy (2019), „Polityka”, nr 46, s. 65.
Zobacz w Google Scholar

Mulawka J.J. (1996), Systemy ekspertowe, WNT, Warszawa.
Zobacz w Google Scholar

Sidigue N., Hojjat A. (2013), Computational Intelligence, Wiley.
Zobacz w Google Scholar

Sun Y., Ansan M. (2016), Edge IoT: Mobile Edge Computing for the Internet of Things, „Communication”, vol. 54, No. 12, s. 22–29.
Zobacz w Google Scholar

Tadeusiewicz R. (1993), Sieci neuronowe, Akademicka Oficyna Wydawnicza, Warszawa.
Zobacz w Google Scholar

Vermessan O., Friess P. (2014), Internet of Things – From Research and Innovation to Market Deployment, River Publisher, Aalborg.
Zobacz w Google Scholar

Wiltz C. (2019), AI Could Make Quantum Computers a Reality, „Design News”, 2019.02.06.
Zobacz w Google Scholar

Zieliński J.S. (1984), Inżynieria systemowa, Skrypt. Uniwersytet Łódzki.
Zobacz w Google Scholar

Zieliński J.S. (2018), Wpływ Smart Grid na informatyczny system zarządzania elektroenergetyką, „Przegląd Organizacji”, nr 10, s. 46–48.
Zobacz w Google Scholar

Zieliński J.S. (2019), Sztuczna inteligencja i nowe narzędzia w elektroenergetyce, „Biuletyn Techniczno-Informacyjny SEP, Oddział Łódzki”, nr 2, s. 18–20.
Zobacz w Google Scholar

Zieliński J.S., Jęczkowska B., Górnicki W., Kopczyńska D., Kupras A. (1993), Systemy ekspertowe wspomagające dyspozytorów w systemie elektroenergetycznym, „Energetyka”, nr 5, s. 156–160.
Zobacz w Google Scholar

Acid S., de Campos L.M., Fernandez-Luna J.M., Huete J.F. (2003), An information retrieval model based on simple Bayesian networks, „International Journal of Intelligent Systems”, vol. 18, s. 251–265.
Zobacz w Google Scholar

Ahmad N., Beg M. (2002), Fuzzy logic based rank aggregation methods for the World Wide Web, „Proc. of the Intl. Conference on Artificial Intelligence in Engineering and Technology (ICAIET02)”, s. 363–368.
Zobacz w Google Scholar

Ailon N. (2009), A Simple Linear Ranking Algorithm Using Query Dependent Intercept Variables, [w:] M. Boughanem, C. Berrut, J. Mothe, C. Soule-Dupuy (red.) Advances in Information Retrieval (ECIR 2009), „Lecture Notes in Computer Science”, vol. 5478, Springer, s. 685–690.
Zobacz w Google Scholar

Aslam J.A., Montague M. (2001), Models for metasearch, „Proc. of the 24th ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 01)”, s. 276–284.
Zobacz w Google Scholar

Baeza-Yates R., Ribeiro-Neto B. (1999), Modern information retrieval, Addison Wesley, Harlow.
Zobacz w Google Scholar

Beg M.M.S. (2004), Parallel rank aggregation for the World Wide Web, „World Wide Web Journal”, vol. 6, no. 1, s. 5–22.
Zobacz w Google Scholar

Belew R.K. (1987), A Connectionist Approach to Conceptual Information Retrieval, „Proceedings of the International Conference on Artificial Intelligence and Law”, Baltimore, s. 116–126.
Zobacz w Google Scholar

Belew R.K. (1989), Adaptive information retrieval: Using a connectionist representation to retrieve and learn about documents, „Proc of the ACM SIGIR conference on Research and Development in Information Retrieval”, s. 11–20.
Zobacz w Google Scholar

Belew R.K. (2000), Finding out about. A cognitive perspective on search engine technology and the WWW, Cambridge University Press, Cambridge.
Zobacz w Google Scholar

Berger H., Dittenbach M., Merkl D. (2004), An Adaptive Information Retrieval System Based on Associative Networks, Conceptual Modelling, „APCCM’04: Proceedings of the First Asia-Pacific Conference on Conceptual Modelling”, Vol. 31, s. 18–22.
Zobacz w Google Scholar

Bookstein A. (1980), Fuzzy requests: an approach to weighted Boolean searches, „Journal of the American Society for Information Science”, vol. 31, no. 4, s. 240–247.
Zobacz w Google Scholar

Bordogna G., Pasi G.A. (1993), Fuzzy linguistic approach generalizing Boolean IR: a model and its evaluation, „Journal of the American Society for Information Science”, vol. 44, no. 2, s. 70–82.
Zobacz w Google Scholar

Bordogna G., Pasi G. (1995), Linguistic Aggregation Operators of Selection Criteria in Fuzzy Information Retrieval, „International Journal of Intelligent Systems”, vol. 10, no. 2, s. 233–248.
Zobacz w Google Scholar

Bordogna G., Pasi G. (2000), Application of Fuzzy Set Theory to Extend Boolean Information Retrieval, [w:] F. Crestani, G. Pasi (red.), Soft Computing in Information Retrieval. Techniques and Applications, Springer, s. 21–47.
Zobacz w Google Scholar

Boughanem M., Brini A., Dubois D. (2009), Possibilistic networks for information retrieval, „International Journal of Approximate Reasoning”, vol. 50, s. 957–968.
Zobacz w Google Scholar

Brini A., Boughanem M., Dubois D. (2005), A model for information retrieval based on possibilistic networks, „Proc. of the Symposium on String Processing and Information Retrieval, Buenos Aires, Argentina, November 2–4”, s. 271–282.
Zobacz w Google Scholar

Brini A., de Campos L.M., Dubois D., Boughanem M. (2005), Query propagation in possibilistic information retrieval networks, „Proc. of the Joint 4th Conference of the European Society for Fuzzy Logic and Technology and the 11th Rencontres Francophones sur la Logique Floue et ses Applications, Barcelona, Spain, September 7–9”, s. 1281–1286.
Zobacz w Google Scholar

Buitelaar P., Cimiano P. (red.) (2008), Ontology Learning and Population – Bridging the Gap from Text to Knowledge, IOS Press.
Zobacz w Google Scholar

Burges, C.J. (2010), From RankNet to LambdaRank to LambdaMART, Microsoft Research Technical Report MSR-TR-2010-82.
Zobacz w Google Scholar

Burges C.J., Ragno R., Le Q.V. (2007), Learning to rank with nonsmooth cost functions, „Advances in Neural Information Processing Systems 19 (NIPS 2006)”, s. 395–402.
Zobacz w Google Scholar

Burges C.J., Shaked T., Renshaw E., Lazier A., Deeds M., Hamilton N., Hullender G. (2005), Learning to rank using gradient descent, „Proc. of the 22nd International Conference on Machine Learning (ICML05)”, s. 89–96.
Zobacz w Google Scholar

Cambazoglu B.B., Aykanat C. (2006), Performance of query processing implementations in ranking-based text retrieval systems using inverted indices, „Information Processing and Management”, vol. 42, no. 4, s. 875–898.
Zobacz w Google Scholar

Campos L.M. de, Fernandez J.M., Huete J.F. (1998), Query expansion in information retrieval systems using a Bayesian network-based thesaurus, „Proc. of the 14th Uncertainty in Artificial Intelligence Conference”, s. 53–60.
Zobacz w Google Scholar

Campos L.M. de, Fernandez-Luna J.M., Huete J.F. (2002), A layered Bayesian network model for document retrieval, [w:] F. Crestani, M. Girolami, van C.J. Rijsbergen (red.), Advances in Information Retrieval, Lecture Notes in Computer Science 2291, Springer, s. 169–182.
Zobacz w Google Scholar

Campos L.M. de, Fernandez-Luna J.M., Huete J.F. (2003), The BNR model: foundations and performance of a Bayesian network-based retrieval model, „International Journal of Approximate Reasoning”, vol. 34, s. 265–285.
Zobacz w Google Scholar

Cao Y., Xu J., Liu T.-Y., Li H., Huang Y., Hon H.-W. (2006), Adapting ranking SVM to document retrieval, „Proc. of the 29th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR06)”, s. 186–193.
Zobacz w Google Scholar

Cao Z., Qin T., Liu T.Y., Tsai M.F., Li H. (2007), Learning to rank: from pairwise approach to listwise approach, „Proc. of the 24th International Conference on Machine Learning (ICML 2007)”, s. 129–136.
Zobacz w Google Scholar

Carvalho V.R., Elsas J.L., Cohen W.W., Carbonel J.G. (2008), A meta-learning approach for robust rank learning, „SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR08)”, s. 2352–2360.
Zobacz w Google Scholar

Chapelle O., Keerthi S.S. (2010), Efficient algorithms for ranking with SVMs, „Information Retrieval Journal”, vol. 13, no. 3, s. 201–215.
Zobacz w Google Scholar

Chen H. (1992), Knowledge-Based Document Retrieval: Framework and Design, „Journal of Information Science: Principles & Practice”, vol. 18, no. 3, s. 293–314.
Zobacz w Google Scholar

Chen H. (1995), Machine learning for information retrieval: neural networks, symbolic learning and genetic algorithms, „Journal of the American Society for Information Science”, vol. 46, no. 3, s. 194–216.
Zobacz w Google Scholar

Chen H., Dhar V. (1991), Cognitive Process as a Basis for Intelligent Retrieval Systems Design, „Information Processing and Management”, vol. 27, no. 5, s. 405–432.
Zobacz w Google Scholar

Chu W., Ghahramani Z. (2005), Gaussian processes for ordinal regression, „Journal of Machine Learning Research”, vol. 6, s. 1019–1041.
Zobacz w Google Scholar

Chu W., Ghahramani Z. (2005a), Preference learning with Gaussian processes, „Proc. of the 22nd International Conference on Machine Learning (ICML05)”, s. 137–144.
Zobacz w Google Scholar

Chu W., Keerthi S.S. (2005), New approaches to support vector ordinal regression, „Proc. of the 22nd International Conference on Machine Learning (ICML 05)”, s. 145–152.
Zobacz w Google Scholar

Cichosz P. (2000), Systemy uczące się, WNT, Warszawa.
Zobacz w Google Scholar

Cimiano P. (2006), Ontology Learning and Population from Text. Algorithms, Evaluation and Applications, Springer.
Zobacz w Google Scholar

Cleverdon C.W. (1991), The significance of the Cranfield tests on index languages, „Proc. of the ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 3–12.
Zobacz w Google Scholar

Cohen P.R., Kjeldsen R. (1987), Information Retrieval by constrained spreading activation on Sematic Networks, „Information Processing & Management”, vol. 23, no. 4, s. 255–268.
Zobacz w Google Scholar

Cohen W.W., Schapire R.E., Singer Y. (1998), Learning to order things, „Advances in Neural Information Processing Systems 10 (NIPS97)”, MIT Press, s. 451–457.
Zobacz w Google Scholar

Cohen W.W., Schapire R.E., Singer Y. (1999), Learning to order things, „Journal of Artificial Intelligence Research”, vol. 10, s. 243–270.
Zobacz w Google Scholar

Cooper W.S., Gey F.C., Dabney D.P. (1992), Probabilistic retrieval based on staged logistic regression, „Proc. of the 15th International ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 198–210.
Zobacz w Google Scholar

Cormen T.H., Leiserson Ch.E., Rivest R.L, Stein C. (2017), Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa.
Zobacz w Google Scholar

Cortes C., Mohri M., Rastogi A. (2007), Magnitude-preserving ranking algorithms, „Proc. of the 24th Intl Conf. on Machine Learning (ICML07)”, s. 169–176.
Zobacz w Google Scholar

Cossock D., Zhang T. (2006), Subset ranking using regression, „Proc. of the 19th Annual Conference on Learning Theory (COLT 2006)”, s. 605–619.
Zobacz w Google Scholar

Cowell P.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. (1999), Probabilistic Networks and Expert Systems, Springer.
Zobacz w Google Scholar

Crammer K., Singer Y. (2002), Pranking with ranking, „Proc. of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (NIPS 01)”, MIT Press, s. 641–647.
Zobacz w Google Scholar

Crestani F. (1997), Application of spreading activation techniques in information retrieval, „Artificial Intelligence Review”, vol. 11, no. 6, s. 453–482.
Zobacz w Google Scholar

Crestani F., Pasi G. (1999), Soft information retrieval: Applications of fuzzy set theory and neural networks, [w:] N. Kasabov, R. Kozma (red.), Neuro-Fuzzy Techniques for Intelligent Information Systems, Springer, s. 287–315.
Zobacz w Google Scholar

Crestani F., van Rijsbergen C.J. (1997), A Model for Adaptive Information Retrieval, „Journal of Intelligent Information Systems”, vol. 8, s. 29–56.
Zobacz w Google Scholar

Croft W., Thompson R.H. (1987), I3R: a new approach to the design of Document Retrieval Systems, „Journal of the American Society for Information Science”, vol. 38, no. 6, s. 389–404.
Zobacz w Google Scholar

Croft W., Lucia T., Cohen P. (1988), Retrieving documents by plausible inference: a preliminary study, „Proc. of ACM SIGIR conference on Research and Development in Information Retrieval”, s. 481–494.
Zobacz w Google Scholar

Croft W., Metzler D., Strohman T. (2009), Search Engines: Information Retrieval in Practice, Pearson.
Zobacz w Google Scholar

Croft W., Lucia T., Crigean J., Willet P. (1989), Retrieving documents by plausible inference: an experimental study, „Information Processing & Management”, vol. 25, no. 6, s. 599–614.
Zobacz w Google Scholar

Dominich S. (2001), Mathematical Foundations of Information Retrieval, Kluwer.
Zobacz w Google Scholar

Dominich S. (2008), The Modern Algebra of Information Retrieval, Springer Verlag, Berlin–Heidelberg.
Zobacz w Google Scholar

Donmez P., Svore K.M., Burges C.J. (2009), On the local optimality of Lambda Rank, „Proc. of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009)”, s. 460–467.
Zobacz w Google Scholar

Dwork C., Kumar R., Naor M., Sivakumar D. (2001), Rank aggregation methods for the web, „Proceedings of the 10th International Conference on World Wide Web (WWW01)”, s. 613–622.
Zobacz w Google Scholar

Fagin R., Kumar R., Sivakumar D. (2003), Efficient similarity search and classification via rank aggregation, „Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD03)”, s. 301–312.
Zobacz w Google Scholar

Fox E.A. (1987), Development of the Coder system: A testbed for artificial intelligence methods in information retrieval, „Information Processing & Management”, vol. 23, no. 4, s. 341–366.
Zobacz w Google Scholar

Frakes W.B., Baeza-Yates R. (1992), Information Retrieval: Data Structures & Algorithms, Prentice Hall.
Zobacz w Google Scholar

Freund Y., Iyer R., Schapire R., Singer Y. (2003), An efficient boosting algorithm for combining preferences, „Journal of Machine Learning Research”, vol. 4, s. 933–969.
Zobacz w Google Scholar

Fuhr N. (1989), Optimum polynomial retrieval functions based on the probability ranking principle, „ACM Transactions on Information Systems”, vol. 7, no. 3, s. 183–204.
Zobacz w Google Scholar

Gey F.C. (1994), Inferring probability of relevance using the method of logistic regression, „Proc. of the 17th International ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 222–231.
Zobacz w Google Scholar

Harrington B. (2009), ASKNet: Automatically Creating Semantic Knowledge Networks from Natural Language Text, PhD Thesis, University of Oxford.
Zobacz w Google Scholar

Harrington B. (2010), A Semantic Network Approach to Measuring Relatedness, „Proc. of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing China”.
Zobacz w Google Scholar

Harrington B., Clark S. (2009), ASKNet: Creating and Evaluating Large Scale Integrated Semantic Networks, „International Journal of Semantic Computing”, vol. 2, no. 3, s. 343–364.
Zobacz w Google Scholar

Harrington E.F. (2003), Online ranking/collaborative filtering using the perceptron algorithm, „Proceedings of the 20th International Conference on Machine Learning (ICML 2003)”, s. 250–257.
Zobacz w Google Scholar

Herbrich R., Graepel T., Obermayer K. (1999), Support Vector Learning for Ordinal Regression, „Proceedings of the 9th International Conference on Artificial Neural Networks, Edinburgh”, s. 97–102.
Zobacz w Google Scholar

Herbrich R., Obermayer K., Graepel T. (2000), Large margin rank boundaries for ordinal regression, [w:] A.J. Smola, P.L. Bartlett, B. Schölkopf, D. Schuurmans (red.), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, s. 115–132.
Zobacz w Google Scholar

Jensen F.V., Nielsen T.D. (2007), Bayesian Networks and Decision Graphs, Springer.
Zobacz w Google Scholar

Jo H. (2019), Text Mining. Concepts, Implementation, and Big Data Challenge, Springer.
Zobacz w Google Scholar

Joachims T. (2002), Optimizing search engines using clickthrough data, „Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD02)”, s. 133–142.
Zobacz w Google Scholar

Joachims T. (2006), Training linear SVMs in linear time, „Proc. of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06)”, s. 217–226.
Zobacz w Google Scholar

Kjærulff U.B, Madsen A.L. (2013), Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Springer.
Zobacz w Google Scholar

Koronacki J., Ćwik J. (2015), Statystyczne systemy uczące się, Exit, Warszawa.
Zobacz w Google Scholar

Koski T., Noble J.M. (2009), Bayesian Networks. An Introduction, Wiley.
Zobacz w Google Scholar

Kowalski G. (2011), Information Retrieval. Architecture and Algorithms, Springer.
Zobacz w Google Scholar

Li P., Burges C., Wu Q. (2008), McRank: learning to rank using multiple classification and gradient boosting, „Advances in Neural Information Processing Systems 20 (NIPS 07)”, s. 845–852.
Zobacz w Google Scholar

Liu T.-Y. (2009), Learning to Rank for Information Retrieval, „Foundation and Trends in Information Retrieval”, vol. 3, no. 3, s. 225–331.
Zobacz w Google Scholar

Liu T.-Y. (2011), Learning to Rank for Information Retrieval, Springer.
Zobacz w Google Scholar

Manning C.D., Raghavan P., Shütze H. (2007), An introduction to information retrieval, Cambridge University Press.
Zobacz w Google Scholar

Matveeva I., Burges C., Burkard T., Laucius A., Wong L. (2006), High accuracy retrieval with multiple nested ranker, „Proc. of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR06)”, s. 437–444.
Zobacz w Google Scholar

Mitra B., Craswell N. (2017), Neural Models for Information Retrieval, arXiv:1705.01509.
Zobacz w Google Scholar

Mitra B., Craswell N. (2018), An Introduction to Neural Information Retrieval, „Foundations and Trends in Information Retrieval”, vol. 13, no. 1, s. 1–126.
Zobacz w Google Scholar

Miyamoto S. (1990), Fuzzy Sets In Information Retrieval And Cluster Analysis, Kluwer.
Zobacz w Google Scholar

Mozer M.C. (1984), Inductive Information Retrieval using parallel distributed computation, Technical Report, Institute for Cognitive Science, University of California, San Diego, USA.
Zobacz w Google Scholar

Nallapati R. (2004), Discriminative models for information retrieval, „Proc. of the 27th International ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 64–71.
Zobacz w Google Scholar

Neapolitan R.E. (2003), Learning Bayesian Networks, Prentice-Hall.
Zobacz w Google Scholar

Onal K.D., Zhang Y., Altingovde I.S., Rahman M.M., Karagoz P., Braylan A., Dang B., Chang H.L., Kim H., McNamara Q., Angert A., Banner E., Khetan V., McDonnell T., Nguyen A.T., Xu D., Wallace B.C., de Rijke M., Lease M. (2018), Neural Information Retrieval: At the End of the Early Years, „Information Retrieval”, vol. 21, no. 2–3, s. 111–182.
Zobacz w Google Scholar

Pantel P., Pennacchiotti M. (2008), Automatically Harvesting and Ontologizing Semantic Relations, „Proc. of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge”, IOS Press, s. 171–195.
Zobacz w Google Scholar

Pearl J. (1988), Probabilistic reasoning in intelligent systems: networks of plausible inference, Morgan Kaufmann.
Zobacz w Google Scholar

Qin T., Liu T.-Y., Lai W., Zhang X.-D., Wang D.-S., Li H. (2007), Ranking with multiple hyperplanes, „Proc. of the 30th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR07)”, s. 279–286.
Zobacz w Google Scholar

Qin T., Liu T.Y., Li H. (2009), A general approximation framework for direct optimization of information retrieval measures, „Information Retrieval”, vol. 13, no. 4, s. 375–397.
Zobacz w Google Scholar

Qin T., Zhang X.-D., Tsai M.-F., Wang D.-S., Liu T.-Y., Li H. (2008), Query-level loss functions for information retrieval, „Information Processing and Management”, vol. 44, no. 2, s. 838–855.
Zobacz w Google Scholar

Radecki T. (1979), Fuzzy set theoretical approach to document retrieval, „Information Processing and Management”, vol. 15, no. 5, s. 247–260.
Zobacz w Google Scholar

Rennie J.D.M., Srebro N. (2005), Loss functions for preference levels: regression with discrete ordered labels, „IJCAI 2005 Multidisciplinary Workshop on Advances in Preference Handling” ACM, New York.
Zobacz w Google Scholar

Ribeiro-Neto B., Muntz R. (1996), A belief network model for IR, „Proc. of the 19th annual international ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 253–260.
Zobacz w Google Scholar

Ribeiro-Neto B., Silva I., Muntz R. (2000), Bayesian Network Models for Information Retrieval, [w:] F. Crestani, G. Pasi (red.), Soft Computing in Information Retrieval. Techniques and Applications, Physica-Verlag, Heidelberg, s. 259–291.
Zobacz w Google Scholar

Richardson S.D., Dolan W.B., Vanderwende L. (1998), MindNet: acquiring and structuring semantic information from text, „Proc. of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Vol. 2, s. 1098–1102.
Zobacz w Google Scholar

Rigutini L., Papini T., Maggini M., Scarselli F. (2008), Learning to rank by a neural-based sorting algorithm, „Proceedings of the SIGIR 2008 Workshop Learning to Rank for Information Retrieval”, s. 1–8.
Zobacz w Google Scholar

Rigutini L., Papini T., Maggini M., Scarselli F. (2011), Learning to rank by a neural preference function, „IEEE Trans. on Neural Networks”, vol. 22 , no. 9, s. 1368–1380.
Zobacz w Google Scholar

Robertson S.E. (1997), The probability ranking principle in IR, „Journal of Documentation”, vol. 33, no. 4, s. 294–304, przedruk w: K. Sparck Jones, P. Willett (red.), Readings in information retrieval, Morgan Kaufmann, s. 281–286.
Zobacz w Google Scholar

Rudin C. (2006), Ranking with a p-norm push, „Proc. of the 19th Annual Conference on Learning Theory (COLT06)”, s. 589–604.
Zobacz w Google Scholar

Rudin C. (2009), P-norm push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List, „Journal of Machine Learning Research”, vol. 10, s. 2233–2271.
Zobacz w Google Scholar

Salton G. (1968), Automatic information organization and retrieval, McGraw-Hill.
Zobacz w Google Scholar

Salton G. (1991), The smart project in automatic document retrieval, „Proceedings of the 14th ACM SIGIR Conference on Research and development in information retrieval”, s. 356–358.
Zobacz w Google Scholar

Salton G., Buckley C. (1987), Term-weighting approaches in automatic text retrieval, „Information Processing and Management”, vol. 24, no. 5, s. 513–523.
Zobacz w Google Scholar

Salton G., McGill M.J. (1983), Introduction to modern information retrieval. McGraw-Hill.
Zobacz w Google Scholar

Salton G., Wong A., & Yang C.S. (1975), A vector space model for automatic indexing, „Communications of the ACM”, vol. 18, no. 11, s. 613–620.
Zobacz w Google Scholar

Sanderson M., Croft W.B. (1999), Deriving concept hierarchies from text, „Proc. of the 22nd ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 206–213.
Zobacz w Google Scholar

Shashua A., Levin A. (2003), Ranking with large margin principles: two approaches, „Advances in Neural Information Processing Systems” 15, s. 937–944.
Zobacz w Google Scholar

Shoval P. (1981), Expert/consultation system for a retrieval data-base with semantic network of concepts, „ACM SIGIR Forum”, vol. 16, no. 1, s. 145–149.
Zobacz w Google Scholar

Shoval P. (1985), Principles, procedures and rules in an expert system for information retrieval, „Information Processing & Management”, vol. 21, no. 6, s. 475–487.
Zobacz w Google Scholar

Sparck Jones K. (1991), The role of Artificial Intelligence in information retrieval, „Journal of the American Society for Information Science”, vol. 42, no. 8, s. 558–565.
Zobacz w Google Scholar

Taylor M., Guiver J., Robertson S., Minka T. (2008), Softrank: optimising non-smooth rank metrics, „Proc. of the 1st International Conference on Web Search and Web Data Mining (WSDM 2008)”, s. 77–86.
Zobacz w Google Scholar

Turtle H. (1991), Inference Networks for Document Retrieval, Ph.D. Thesis, University of Massachusetts.
Zobacz w Google Scholar

Turtle H., Croft W. (1990), Inference networks for document retrieval, „Proc. of the 13th ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 1–24.
Zobacz w Google Scholar

Turtle H., Croft W.B. (1991), Evaluation of an inference network-based retrieval model, „ACM Transactions on Information Systems”, vol. 9, no. 3, s. 187–222.
Zobacz w Google Scholar

Volkovs M.N., Zemel R.S. (2009), Boltzrank: learning to maximize expected ranking gain, „Proc. of the 26th International Conference on Machine Learning (ICML 2009)”, s. 1089–1096.
Zobacz w Google Scholar

Wilkinson R., Hingston P. (1991), Using the cosine measure in a neural network for document retrieval, „Proc. of the ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 202–210.
Zobacz w Google Scholar

Wu G., Li J., Feng L., Wang K. (2008), Identifying potentially important concepts and relations in an ontology, „Proc. of the 7th International Semantic Web Conference, Lecture Notes in Computer Science”, vol. 5318, Springer, s. 33–49.
Zobacz w Google Scholar

Xia F., Liu T.Y., Wang J., Zhang W., Li H. (2008), Listwise approach to learning to rank – theorem and algorithm, „Proc. of the 25th International Conference on Machine Learning (ICML 2008)”, s. 1192–1199.
Zobacz w Google Scholar

Xu J., Li H. (2007), Adarank: a boosting algorithm for information retrieval, „Proc. of the 30th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007)”, s. 391–398.
Zobacz w Google Scholar

Yager R.R. (1987), A note on weighted queries in information retrieval systems, „Journal of the American Society for Information Science”, vol. 38, no. 1, s. 23–24.
Zobacz w Google Scholar

Yager R.R. (1988), On ordered weighted averaging aggregation operators in multi-criteria decision making, „IEEE Trans. on Systems, Man and Cybernetics”, vol. 18, no. 1, s. 183–190.
Zobacz w Google Scholar

Yager R.R. (1996), Quantifier guided aggregation using OWA operators, „International Journal of Intelligent Systems”, vol. 11, no. 1, s. 49–73.
Zobacz w Google Scholar

Yager R.R. (2000), A Framework for Linguistic and Hierarchical Queries in Document Retrieval, [w:] F. Crestani, G. Pasi (red.), Soft Computing in Information Retrieval. Techniques and Applications, Springer, s. 3–20.
Zobacz w Google Scholar

Zadrożny S., Kacprzyk J. (2005), An Extended Fuzzy Boolean Model of Information Retrieval Revisited, „Proc. of the 14th IEEE International Conference on Fuzzy Systems”, s. 1020–1025.
Zobacz w Google Scholar

Zhang Y., Rahman M., Braylan A., Dang B., Chang H.-L., Kim H., McNamara Q., Angert A., Banner E., Khetan V., McDonnell T., Nguyen A.T., Xu D., Wallace B., Lease M. (2017), Neural Information Retrieval: A Literature Review, Raport Techniczny, arXiv:1611.06792.
Zobacz w Google Scholar

Berners-Lee T. (2000), Semantic Web – XML2000, prezentacja on-line, W3C, https://www.w3.org/2000/Talks/1206-xml2k-tbl/ (dostęp: 30.10.2020).
Zobacz w Google Scholar

Biedrzycki N. (2018), Rzeczywistość stapia się ze światem cyfrowym. AR to nie tylko Pokemon Go, https://businessinsider.com.pl/technologie/nowe-technologie/ar-czym-jest-rozszerzona-rzeczywistosc/qn6173n, 04.03.2018, (dostęp: 01.10.2019).
Zobacz w Google Scholar

Czerwonka P. (2016), Zastosowanie chmury obliczeniowej w polskich organizacjach, Wydawnictwo Biblioteka, Łódź.
Zobacz w Google Scholar

Duhigg C. (2012), Siła Nawyku. Dlaczego robimy to, co robimy i jak można to zmienić w życiu i biznesie, Wydawnictwo Naukowe PWN, Warszawa.
Zobacz w Google Scholar

Galitsky B. (2019), Developing Enterprise Chatbots, Springer.
Zobacz w Google Scholar

Golbeck J., Hendler J. (2007), A Semantic Web approach to the provenance challenge, „Concurrency and Computation: Practice and Experience”, vol. 20, Issue 5, s. 431–439.
Zobacz w Google Scholar

Gonciarski W. (2010), Gospodarka cyfrowa – powstanie i etapy rozwoju, [w:] W. Gonciarski (red.), Zarządzanie w warunkach gospodarki cyfrowej, WAT, Warszawa, s. 11–38.
Zobacz w Google Scholar

Gonciarski W. (2017), Koncepcja zarządzania 2.0 jako konsekwencja rewolucji cyfrowej, Studia Ekonomiczne, „Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, nr 338, s. 38–53.
Zobacz w Google Scholar

Henssen D.J.H.A., van den Heuvel L., De Jong G., Vorstenbosch M.A.T.M., van Cappellen van Walsum A.‐M., Van den Hurk M.M., Kooloos J.G.M., Bartels R.H.M.A. (2020),
Zobacz w Google Scholar

Neuroanatomy Learning: Augmented Reality vs. Cross‐Sections, „Anatomical Sciences Education”, vol. 13, no. 3, s. 353–365.
Zobacz w Google Scholar

Hiraoka T., Neubig G., Yoshino K., Toda T., Nakamura S. (2017), Active Learning for Example-based Dialog Systems, [w:] K. Jokinen, G. Wilcock (red.), Dialogues with Social Robots, Springer, s. 67–78.
Zobacz w Google Scholar

Kempa A. (2017), Wprowadzenie do WPF – Tworzenie aplikacji w WPF przy użyciu XAML i C#, Helion, Gliwice.
Zobacz w Google Scholar

Kifer M. (2008), Rule Interchange Format: The Framework, [w:] D. Calvanese, G. Lausen (red.) Web Reasoning and Rule Systems. Proceedings of Second International Conference, RR 2008, Karlsruhe, Germany, 31 October–1 November 2008, „Lecture Notes in Computer Science”, vol. 5341, s. 1–11.
Zobacz w Google Scholar

Kifer M., Boley H. (2010), RIF Overview (Documentation), https://www.w3.org/ TR/2010/NOTE-rif-overview-20100622 (dostęp: 16.09.2019).
Zobacz w Google Scholar

Malinowski G. (2010), Logika ogólna, Wydawnictwo Naukowe PWN, Warszawa, s. 18.
Zobacz w Google Scholar

Mayer-Schonberge V., Cukier L. (2014), Big-Data – Rewolucja, która zmieni nasze myślenie, pracę i życie, MT Biznes, Warszawa.
Zobacz w Google Scholar

Mazurek G. (2019), Transformacja Cyfrowa – Perspektywa Marketingu, Wydawnictwo Naukowe PWN, Warszawa.
Zobacz w Google Scholar

Mell P., Grance T. (2019), The NIST Definition of Cloud Computing – Recommendation od the National Institute of Standards and Technology, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf (dostęp: 28.09.2019).
Zobacz w Google Scholar

Mlodinow L. (2016), Nieświadomy mozg – jak to, co dzieje się za progiem świadomości, wpływa na nasze życie, Prószyński Media, Warszawa, s. 98.
Zobacz w Google Scholar

RDF (2009), RDF (Documentation), https://www.w3.org/RDF/ (dostęp: 14.09.2019).
Zobacz w Google Scholar

Rifkin J. (2001), Koniec pracy, Wydawnictwo Dolnośląskie, Wrocław.
Zobacz w Google Scholar

Settles B. (2019), Active Learning Literature Survey, „Computer Sciences Technical Report”, 1648, University of Wisconsin–Madison, Updated on: January 26, 2019, www.burrsettles.com/pub/settles.activelearning.pdf (dostęp: 15.05.2019).
Zobacz w Google Scholar

Thomas R., McSharry P. (2015), Big Data Revolution, Wiley, Chichester.
Zobacz w Google Scholar

Unicode (2019), Unicode, https://www.unicode.org/versions/Unicode12.0.0/ch01.pdf (dostęp: 14.09.2019).
Zobacz w Google Scholar

Zieliński J.S. (2000), Zarys badań nad sztuczną inteligencją, [w:] J.S. Zieliński (red.), Inteligentne systemy w zarządzaniu. Teoria i praktyka, Wydawnictwo Naukowe PWN, Warszawa.
Zobacz w Google Scholar

okladka

Pobrania

Opublikowane

28 kwietnia 2021

Szczegóły dotyczące dostępnego formatu publikacji: ISBN

ISBN

Co-publisher's ISBN-13 (24)

978-83-8220-353-0

Szczegóły dotyczące dostępnego formatu publikacji: ISBN (e-book)

ISBN (e-book)

Co-publisher's ISBN-13 (24)

978-83-8220-354-7

Szczegóły dotyczące dostępnego formatu publikacji: ISBN Agent PR

ISBN Agent PR

Co-publisher's ISBN-13 (24)

978-83-64462-67-2

Inne prace tego samego autora